
Assignment 1 – Hello World

Reading:

• https://techterms.com/definition/interpreter
• http://pythoncentral.io/execute-python-script-file-shell/

Goals:

• Execute some commands in the Python interpreter
• Write a simple python script and run it

Interpreter:

1. Execute some commands in the Python interpreter
1. Open the python interpreter and you should be greeted with some version

information, followed by a prompt such as “>>> ”
2. The interpreter is like the linux command line, but instead of running a shell like

bash, it’s running python. The interpreter is a great way to experiment or test
functionality while writing a script.

3. Try some simple commands, for example:
1. 2 + 2
2. x = 3
3. y = 5
4. x * y

2. Get the interpreter to say “Hello World!” as output (i.e. print a string of characters)

Scripts:

• hello.py
◦ Input: none
◦ Output: “Hello World!”
◦ Extra Credit: print it in a different color

https://techterms.com/definition/interpreter
http://pythoncentral.io/execute-python-script-file-shell/

Assignment 2 – Copycat

Reading:

• https://www.learnpython.org/en/Modules_and_Packages
• https://www.computerhope.com/jargon/p/positional-parameter.htm

Goals:

• Use the help() and dir() functions
• Import a module and explore it
• Print the text passed on the command line

Interpreter:

1. Run “import sys”
1. This imports the “sys” module (also called a package or library)
2. Modules give you access to functions you might need to do more complicated tasks
3. Just put “import sys” at the top of a python script to have access to it in that script

2. Run “dir(sys)”
1. This lists all of the functions and variables available in the “sys” module
2. For example, if you see “argv” in that list, you would access it with “sys.argv”

3. Run “help(sys)” and look through it, then press “Q” to leave
1. This shows some documentation for the object you call it on, in this case the

documentation for the “sys” module itself
2. This is very useful for functions as well; try “help(sys.exit)”

Scripts:

• copycat.py
◦ Input: some text on the command line

▪ e.g. “python copycat.py text to print”
◦ Output: the same text printed to the command line
◦ References:

▪ https://docs.python.org/3.10/library/sys.html#sys.argv
◦ Extra Credit: if given an input including double quotes, preserve them

https://docs.python.org/3.10/library/sys.html#sys.argv
https://www.computerhope.com/jargon/p/positional-parameter.htm
https://www.learnpython.org/en/Modules_and_Packages

Assignment 3 – Number Translator

Reading:

• http://www.afterhoursprogramming.com/tutorial/Python/If-Statement/
• http://effbot.org/zone/python-list.htm
• http://www.pythonforbeginners.com/dictionary/how-to-use-dictionaries-in-python
• http://interactivepython.org/courselib/static/thinkcspy/Functions/mainfunction.html

Goals:

• Use if statements, lists, and dictionaries
• Get user input from the command line

Interpreter:

1. Write an if statement
1. Enter the following “if 3 < 5:” and press enter
2. You’ll be greeted with “... “ on the next line, which is how the interpreter allows

you to enter multi-line statements
3. Press space twice to indent, then type “print('yes')” and press enter twice
4. The interpreter will print “yes”
5. You can also modify this behavior and get more control with “elif” and “else”

2. Create a list
1. Run “mylist = [2, 5, 6]” which creates a list with some numbers in it
2. Run “mylist[1]” to get the second element in the list (the first index is 0)
3. Run “mylist[0] = 3” to change the first element in the list (print the list to

confirm)
4. Run “mylist.append('a')” to add an element to the end of the list (print to

confirm)
5. Run “mylist.index('a')” to search the list and return the index of the

character “a”
3. Create a dictionary

1. Run “mydict = {'tacos': 'good', 'mushrooms': 'bad'}” to create
a dictionary

2. Run “mydict['tacos']” to get the value that corresponds to the “tacos” key
3. Run “mydict['dozen'] = 12” to add a new entry (print the dict to confirm)

4. Get user input
1. Run “x = input('Enter something: ')” and type something into the

prompt
2. Confirm that “x” now has the text you just typed by printing it

http://interactivepython.org/courselib/static/thinkcspy/Functions/mainfunction.html
http://www.pythonforbeginners.com/dictionary/how-to-use-dictionaries-in-python
http://effbot.org/zone/python-list.htm
http://www.afterhoursprogramming.com/tutorial/Python/If-Statement/

Scripts:

• num_translate.py
◦ Input: user enters number names (e.g. “one”, “two”) when prompted
◦ Output: those names converted to numerals (e.g. “1” ,“2”)
◦ Functions:

▪ translate_if(text) returns translated text by using if statements
▪ translate_dict(text) returns translated text by using a dictionary
▪ translate_list(text) returns translated text by using a list
▪ main() prompts the user for input, then executes all three functions and prints

the result from each
◦ References:

▪ https://docs.python.org/3.10/library/functions.html#input
◦ Extra Credit: make the script run forever until the user enters “exit” at the prompt

https://docs.python.org/3.10/library/functions.html#input

Assignment 4 – Secret Code

Reading:

• http://pymbook.readthedocs.io/en/latest/file.html
• https://en.wikipedia.org/wiki/ROT13

Goals:

• Read and write files
• Manipulate strings

Interpreter:

1. First we’ll write some text to a new file:

 >>> with open('temp.txt', 'w') as f:
 ... f.write('blah blah blah')

2. Open that file in a GUI text editor and confirm your text is there
3. Back to the interpreter, let’s print the contents of that file:

 >>> with open('temp.txt', 'r') as f:
 ... print f.read()

4. Strings are lot like lists in how you can work with them
1. You can index them, for example “print('abcdefg'[4])”
2. You can combine them “print('a' + 'b' + 'cde')”
3. You can iterate over them as well:

 >>> for x in 'abc':
 ... print(x)

Scripts:

1. rot13.py
1. Input: name of a file as a command line argument
2. Output: run ROT13 on the text in the file and write it back to the original file
3. Extra Credit: If the file doesn’t exist, print an error message for the user

https://en.wikipedia.org/wiki/ROT13
http://pymbook.readthedocs.io/en/latest/file.html

Assignment 5 – Send an E-mail

Reading:

• https://docs.python.org/3.10/library/email.examples.html

References:

• https://docs.python.org/3.10/library/email.html#module-email
• https://docs.python.org/3.10/library/smtplib.html#module-smtplib

Goals:

• Write a script that sends yourself an e-mail

Interpreter:

1. Make sure you can log in to an e-mail account
1. You can use any account you’d like, although I have a test account you may use:

1. Username: notify@jahschwa.com
2. Password: located in this file on grandline /home/share/notify.txt

2. Running through the first example from the link in the “Reading” section in the
interpreter is probably a good idea

Scripts:

• send_mail.py
◦ Input: text to send via command line
◦ Output: e-mail sent to yourself
◦ Extra Credit: make this modular so other scripts can import your e-mail sending

function or object and use it themselves

https://docs.python.org/3.10/library/smtplib.html#module-smtplib
https://docs.python.org/3.10/library/email.html#module-email
https://docs.python.org/3.10/library/email.examples.html

Assignment 6 – Write a Sibyl Chat Command

Reading:

• https://github.com/TheSchwa/sibyl/blob/master/README.md
• https://github.com/TheSchwa/sibyl/wiki
• https://github.com/TheSchwa/sibyl/wiki/Dev
• https://github.com/TheSchwa/sibyl/wiki/Dev-alarm

References:

• https://github.com/TheSchwa/sibyl/wiki/Dev-Plug-Ins
• https://github.com/TheSchwa/sibyl/wiki/Dev-Decorators

Goals:

• Write a chat command for the Sibyl bot

Suggestions (in vague order of increasing difficulty):

• Randomly print the name of someone in the current room
• Convert roman numerals into decimal numbers
• Send an e-mail using sibyl from a chatroom
• Get the title of a webpage
• Roll some dice (e.g. “4d6” or “3d8+5”)
• Anything you want!

Interpreter:

• You can test logic in the interpreter, for example write the chat command function before
plugging it in to sibyl and make sure it works correctly

Script:

• Whatever filename you’d like
◦ Input: the text the user entered will be passed to your function by sibyl
◦ Output: sibyl will say in the chatroom whatever you return from the function
◦ Extra Credit: make a config option in your plugin

https://github.com/TheSchwa/sibyl/wiki/Dev-Decorators
https://github.com/TheSchwa/sibyl/wiki/Dev-Plug-Ins
https://github.com/TheSchwa/sibyl/wiki/Dev-alarm
https://github.com/TheSchwa/sibyl/wiki/Dev
https://github.com/TheSchwa/sibyl/wiki
https://github.com/TheSchwa/sibyl/blob/master/README.md

Assignment 7 – Battleship

Reading:

• https://jeffknupp.com/blog/2014/06/18/improve-your-python-python-classes-and-object-
oriented-programming/

• https://www.python-course.eu/python3_magic_methods.php

References:

• https://grandline.jahschwa.com/files/battle_spec.py

Goals:

• Write a single player game of Battleship with some level of AI played via command line
• Edit the referenced file directly, completing all instructions marked with [TODO]
• Remove the [TODO] markers as you go so you can use your editor’s find feature to

locate things you still need to do

Interpreter:

• This will be useful for testing the behavior of the classes you define

Script:

• battleship.py
◦ Input: locations on the board to hit
◦ Output: ASCII representations of both boards and status messages
◦ Classes:

▪ Point
▪ Ship
▪ Board
▪ AI

◦ Functions:
▪ main() plays the game forever
▪ play() handles playing one game, alternating turns, and checking for winner
▪ take_turn(ai_board, ai, turn) handles a single turn for player or AI
▪ print_boards(p1, ai, hide) prints both boards, hiding the AI ships

https://grandline.jahschwa.com/files/battle_spec.py
https://www.python-course.eu/python3_magic_methods.php
https://jeffknupp.com/blog/2014/06/18/improve-your-python-python-classes-and-object-oriented-programming/
https://jeffknupp.com/blog/2014/06/18/improve-your-python-python-classes-and-object-oriented-programming/

