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Motivation

This work is based on work I performed last semester implementing a real-valued genetic algorithm in 
python.  While this was moderately successful, my implementation often failed to converge, even after 
many (i.e. 10,000) generations.  Therefore, my main goal in this project was to improve the stopping 
criteria.  In addition, I attempted to solve a real-world problem with the algorithm (all previous 
problems were artificially created test equations).

Background

Optimization consists of finding the inputs to a function that yield the smallest (or largest) output.  
Traditional methods such as gradient descent are highly prone to getting stuck in local optima.  A local 
optimum has a gradient of zero, but there are other points in the search space that would yield a better 
answer.  This can be seen below in Fig. 1 where the global minimum is at x = 0, but some algorithms 
may get “stuck” in the local minima at x = ±2π.  Genetic algorithms have been proposed as a meta-
heuristic approach to improve the odds of finding a global optimum in the search space.  

Figure 1.  Graph showing global and local minima.

Genetic algorithms are based on the theories of evolution and natural selection, whereby on the fittest 
individuals in a population survive to reproduce.  This project deals specifically with real-valued 
genetic algorithms, as opposed to discrete genetic algorithms.  The algorithm tracks a population of 
points in the search space where each member of the population has a value for every variable in the 
optimization problem.  For each generation, the members of the population are evaluated using a 
fitness function (the equation to be optimized) based on the variables of each member.  The worst 
performing individuals are then removed from the population, and the remaining members are bred to 
create new children.  This involves crossover, whereby children receive a random mixture of their 
parents' genes, and mutation, whereby children randomly mutate.  The removal and breeding processes 
ensure some measure of convergence, and the mutation aspect continues searching the entire problem 
space for the duration of the algorithm.  Given infinite time, a genetic algorithm should theoretically 
find the global optimum via mutation even if the population converges toward a local optimum.



Stopping Criteria

Deciding when to stop a genetic algorithm is not an easy task [1].  The simplest stopping criteria is to 
terminate after a set number of generations have passed.  However, this is inaccurate and does not 
check for any form of convergence.  The stopping criteria I settled on in the first iteration of this project
was so-called genotypical because it was based on the variables of the population members.  The 
algorithm stopped when the variance of the genes of the members passed below a threshold.  In many 
cases, the algorithm never actually stopped under this criteria, instead running for the maximum 10,000
generations.  In most of these cases, it found a global minimum earlier, but due to the slow speed at 
which genetic algorithms descend gradients, it failed to converge.  Thus in this project I tried 
phenotypical stopping criteria instead [2].  In this method, the algorithm keeps track of the best fitness 
valued achieved in the past n generations.  It terminates when the variance of this history falls below a 
threshold.  This introduces a new user-defined parameter, the history window.

Previous Implementation

The previous implementation was derived from personal insight and some tips from reading pertinent 
literature.  I settled on a crossover scheme of Gaussian combination, where the children's genes are 
pulled from a Gaussian distribution centered on the mean of the parents and with a standard deviation 
equal to half the distance between the parents.  This promotes convergence since about 68% of values 
will fall between the parents, but also allows exploration of the local problem space since about 32% of
values will fall outside the range of the parents.  The algorithm was an elitist genetic algorithm, since 
the best performing parents are kept in the population to compete with the children [3].  However, my 
implementation implements population-wide elitism, rather than family-wide elitism.  Mutation 
consisted of generating a completely random member to add to the population.

Methods and Changes for this Project

The main change is the implementation of the fitness variance stopping criteria.  Although the previous 
algorithm was almost always successful in finding the global minimum in the test functions, it often 
never stopped until reaching its maximum number of generations.  In many cases, these runs found the 
approximate global minimum in an early generation but then failed to converge as the algorithm 
performed steepest descent.  In changing the stopping criteria, the algorithm would sometimes 
terminate after only one or two generations.  To prevent this behavior, I created a new parameter that 
allows the user to set a minimum number of generations the algorithm must complete before stopping.  
All code is available in Appendix B.

The same test functions from the first iteration were tested again using the new stopping criteria [4].  
As before, each function was tested using a population of 1000 members, tolerance of 10-12, 100 
minimum generations, and 10,000 max iterations.  In addition, these tests were performed using a 
fitness history of the 100 most recent best fitness values.  As before, the code relies on the SciPy 
libraries [5].

I chose to investigate a common problem facing many people and companies, namely the optimal 
placement of wireless access points.  This problem and solution is implemented in the “genetic-
wifi.py” file.  The user first creates a Room (from “room.py”) by adding Walls (from “wall.py”) to take
them into account in attenuation calculation.  Walls are naively assumed to have an additive attenuation
of 5dB [6,7,8,9].  Regular attenuation is calculated using the Free Space Path Loss formula shown 
below as Eq. 1, where d is the distance in meters, f is the frequency in hertz, and c is the speed of light 



in meters per second.  This problem is a good fit for a genetic algorithm because the introduction of the
walls create discrete discontinuities that traditional algorithms tend to struggle with.

FSPL(dB)=20 log10( 4 πdf
c ) Eq. 1

Attenuation is naively calculated on the straight path from the potential access point to each user 
location, and the average of these calculations over all user locations is the fitness function.  The user 
then supplies several locations where they want good reception, which can be weighted to place 
different priorities on different locations.  I constructed an approximate blueprint for my apartment in 
the Whitney Center and used this to test the algorithm.  The blueprint is shown below as Fig 2, with 
dimensions listed in feet.  The access point is forbidden from being in the bathroom or the maintenance
closet directly above it.  The red circles indicate points where I would like a strong WiFi signal, and are
explained to the right of the figure.  The blue circles indicate the points found by the algorithm given 
different weights.  The algorithm was tested once by weighting the locations, in order, as [1,1,1,1,1] 
and then also as [2,1,0.5,0.5,0.5].  The first run places equal priority on all locations.  In the second 
case, I prioritize locations that do not have ethernet near them.

1. Table in the corner
(no ethernet nearby)

2. Sofa (ethernet somewhat
close by)

3. Armchair (ethernet very
close by)

4. Bedroom B (ethernet very 
close by)

5. Bedroom A (ethernet very 
close by)

Figure 3.  Approximate floor plan of my apartment.



Results

The results of running the modified algorithm on the test problems can be seen below in Table 1.  The 
previous results are included in Appendix A.  A comparison of the modified algorithm's performance to 
the original algorithm's performance is presented in Fig. 4 below.  The blue bars indicate the 
generations required for the original algorithm, and the red bars indicate the generations required for 
the modified algorithm.  Note that black bars indicate values of 10,000 for the original algorithm.  
These values were replace with “500” to make the smaller runs more visible.

Table 1.  Results of the modified genetic algorithm for various test functions with 5 simulations each.

Function Converged Global Min Gen Mean Gen Max Gen Min Err Mean Err Max Err

ackley 5 / 5 5 / 5 133 135 136 0 0 0

sphere 5 / 5 5 / 5 149 151.6 153 0 0 0

rosenbrock 5 / 5 4 / 5 239 389.2 588 0 49.8 249

beale 5 / 5 5 / 5 118 121.4 125 0 0 0

goldstein 5 / 5 5 / 5 121 121 121 0 0 0

booth 5 / 5 5 / 5 114 117.6 121 0 0 0

bukin6 5 / 5 1 / 5 436 468 511 0.0016 0.0094 0.0239

matyas 5 / 5 5 / 5 113 115 118 0 0 0

levi13 5 / 5 5 / 5 118 120.4 121 0 0 0

threehump 5 / 5 5 / 5 112 113.2 115 0 0 0

easom 5 / 5 5 / 5 129 131.6 135 0 0 0

crosstray 5 / 5 5 / 5 107 112 119 0 0 0

eggholder 5 / 5 0 / 5 125 328.6 475 2.722 2.899 3.603

holdertable 5 / 5 5 / 5 129 132.8 137 0 0 0

mccormick 5 / 5 5 / 5 108 111.8 114 0 0 0

schaffer2 5 / 5 5 / 5 117 127.8 133 0 0 0

schaffer4 5 / 5 0 / 5 123 171.4 229 0.208 0.208 0.208

styblinski 5 / 5 5 / 5 114 117 119 0 0 0

simionescu 5 / 5 5 / 5 118 123 126 0 0 0

Figure 4.  Comparison of performance on test problems.



The results from the WiFi  access point optimization can be seen in Fig. 3.  For equal weighted 
locations, the algorithm chose (8.9,18.9) as optimum in 149 generations.  (The origin is taken from the 
bottom left of the bounding box of the floor plan.)  For ethernet-weighted locations, the algorithm 
chose (4.1,35.0) as optimum in 128 generations.  Both of these results make sense given the 
parameters.

Conclusion

The results on the test data showed almost no change in accuracy from the original algorithm.  The 
only exception is on the eggholder function, for which the modified version never found the global 
minimum.  In terms of speed and convergence, the modified algorithm is clearly superior.  Using the 
new stopping criterion, it is almost always able to stop earlier than the original implementation while 
retaining just as much accuracy.  The new phenotypical stopping criteria is obviously better, in general, 
than the genotypical one.

The WiFi access point results are reasonable.  In fact, the actual access point in my apartment is located
almost exactly in the place specified by the algorithm for the equal weights run.  This supports the 
assertion that the algorithm is, in fact, solving the WiFi problem, since the building designers likely 
performed a similar survey.  The result for ethernet-weighting makes sense since there is very little 
weight near the bottom of the apartment.

After initial testing, I added two additional constraints to the population members.  They must not be 
closer than one foot to any user specified location.  This is important because getting too close to an 
access point actually degrades the connection quality.  In addition, I added the constraint that 
connections do not improve below 20dB attenuation.  Neither of these significantly affected the results.
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Appendix A – Test problem results from original report

Function Converged Global Min Gen. Mean Gen. Max Gen. Min Err. Mean Err. Max Err.

ackley 5 / 5 5 / 5 91 92.4 94 0 0 0

sphere 5 / 5 5 / 5 132 132.8 134 0 0 0

rosenbrock 0 / 5 4 / 5 10000 10000 10000 0 5.28 26.4

beale 5 / 5 5 / 5 152 175 249 0 0 0

goldstein 0 / 5 5 / 5 10000 10000 10000 0 0 0

booth 5 / 5 5 / 5 108 110.2 112 0 0 0

bukin6 5 / 5 1 / 5 444 480.4 512 0.0018 0.0078 0.0138

matyas 5 / 5 5 / 5 129 135.2 144 0 0 0

levi13 5 / 5 5 / 5 98 99 101 0 0 0

threehump 5 / 5 5 / 5 94 95.6 97 0 0 0

easom 0 / 5 5 / 5 10000 10000 10000 0 0 0

crosstray 0 / 5 5 / 5 10000 10000 10000 0 0 0

eggholder 0 / 5 5 / 5 10000 10000 10000 0 0 0

holdertable 0 / 5 5 / 5 10000 10000 10000 0 0 0

mccormick 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer2 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer4 0 / 5 0 / 5 10000 10000 10000 0.208 0.208 0.208

styblinski 0 / 5 5 / 5 10000 10000 10000 0 0 0

simionescu 0 / 5 5 / 5 10000 10000 10000 0 0 0



Appendix B

Population.py

#!/usr/bin/env python 
# 
# The Population class implements a real-valued genetic algorithm 
# for finding the minimum of a function. 
# 
# Author: Joshua A Haas 
# Data: 2014-12-01 

import time,random 
import numpy as np 

class Population: 
    
  def __init__(self,fit,con,mins,maxs, 
      pop=None,pop_size=1000,kill_rate=0.5,mut_rate=0.25): 
    """Create a new population for genetic optimization""" 
    
    # Set required args 
    self.fit_fun = fit 
    self.con_fun = con 
    self.mins = mins 
    self.maxs = maxs 
    
    # Set optional args 
    self.pop = pop 
    self.pop_size = pop_size 
    self.kill_rate = kill_rate 
    self.mut_rate = mut_rate 
    
    # Other setup 
    self.genes = len(mins) 
    self.hist = np.array([]) 
    
    if self.pop is None: 
      self.pop = np.zeros((self.pop_size,self.genes)) 
    
    self.fitness = np.zeros(self.pop_size) 
    
    self.checkparams() 
    
    random.seed(time.time()) 
  
  def checkparams(self): 
    """test all parameters for validity""" 
    



    # Type assertions 
    assert callable(self.fit_fun), 'Parameter fit must be function' 
    assert callable(self.con_fun), 'Parameter con must be function' 
    assert isinstance(self.mins,np.ndarray), 'Parameter mins must be 

numpy.ndarray' 
    assert isinstance(self.maxs,np.ndarray), 'Parameter maxs must be 

numpy.ndarray' 
    assert isinstance(self.pop,np.ndarray), 'Parameter pop must be 

numpy.ndarray' 
    assert isinstance(self.pop_size,int), 'Parameter pop_size must be

int' 
    assert isinstance(self.kill_rate,(int,float)), 'Parameter 

kill_rate must be int or float' 
    assert isinstance(self.mut_rate,(int,float)), 'Parameter mut_rate

must be int or float' 
    
    # Individual assertions 
    assert len(self.mins.shape)==1, 'Parameter mins must be row 

vector' 
    assert len(self.maxs.shape)==1, 'Parameter maxs must be row 

vector' 
    assert len(self.pop)==self.pop_size, 'Parameter pop must be of 

length pop_size' 
    assert self.pop_size>0, 'Parameter pop_size must be greater than 

0' 
    assert (self.kill_rate>=0) and (self.kill_rate<1), 'Parameter 

kill_rate must be in [0,1)' 
    assert (self.mut_rate>=0) and (self.mut_rate<1), 'Parameter 

mut_rate must be in [0,1)' 
    
    # Dependant assertions 
    assert self.pop.shape[0]==self.pop_size, 'Parameter pop must have

pop_size rows' 
    assert self.pop.shape[1]==self.genes, 'Parameter pop must have 

genes cols' 
    assert self.mins.shape==self.maxs.shape, 'Parameters mins and 

maxs must be same shape' 
    assert all(self.maxs>self.mins), 'Parameter maxs must be greater 

than mins' 
  
  def randpop(self): 
    """generate a random population""" 

    for r in xrange(0,self.pop_size): 
      self.pop[r,:] = self.getrandmem() 
    self.updatefit() 

  def getrandmem(self): 
    """generate a random member using uniform dist""" 



     
    feas = False 
    mem = np.zeros(self.genes) 
    while not feas: 
      for g in xrange(0,self.genes): 
        mem[g] = random.uniform(self.mins[g],self.maxs[g]) 
      feas = self.isfeasible(mem) 
    return mem 

  def isfeasible(self,mem): 
    """check if a member is feasible""" 
    
    return ((self.con_fun(mem)) and 
      all(mem>self.mins) and 
      all(mem<self.maxs)) 

  def updatefit(self,ind=None): 
    """update fitness values""" 
  
    if ind is None: 
      ind = xrange(0,self.pop_size) 
    for i in ind: 
      self.fitness[i] = self.fit_fun(self.pop[i,:]) 

  def evolve(self,maxiter=1000,converge=True,tol=1e-
6,hist=100,mingen=1): 

    """evolve the population until convergence or maxiter""" 
    
    converged = False 
    i = 0 
    while ((not converged) or (not converge)) and (i<maxiter): 
      i += 1 
      dead = self.getkilled() 
      self.breedpop(dead) 
      self.updatefit(dead) 
      if converge: 
        converged = self.isconverged(tol,hist,mingen) 
    return i 
  
  def getkilled(self): 
    """return indices of randomly killed""" 
    
    killnum = int(self.kill_rate*self.pop_size) 
    return self.fitness.argsort()[-killnum:] 
  
  def getunfit(self,pcnt): 
    """return the indices of the most unfit""" 
    
    unfit = int(self.pop_size*pcnt) 



    return self.fitness.argsort()[-unfit:] 
  
  def getfit(self,pcnt): 
    """return the indices of the most fit""" 
  
    fit = int(self.pop_size*pcnt) 
    return self.fitness.argsort()[:-(fit+1)] 
  
  def breedpop(self,dead): 
    """breed new members replacing the given indices""" 
  
    alive = np.setdiff1d(xrange(0,self.pop_size),dead) 
    for d in dead: 
      self.pop[d] = self.breedmem(alive) 
  
  def breedmem(self,alive): 
    """breed a new member from those that are alive""" 
  
    parents = random.sample(alive,2) 
    p1 = self.pop[parents[0]] 
    p2 = self.pop[parents[1]] 
    mu = (p1+p2)/2 
    sigma = abs(p2-mu) 
    mem = np.zeros(self.genes) 
    feas = False 
    while not feas: 
      for g in xrange(0,self.genes): 
        if random.uniform(0,1)<self.mut_rate: 
          mem[g] = random.uniform(self.mins[g],self.maxs[g]) 
        else: 
          mem[g] = random.gauss(mu[g],sigma[g]) 
      feas = self.isfeasible(mem) 
    return mem 
  
  def isconverged(self,tol,hist,mingen): 
    """check for convegence""" 
    
    self.hist = np.append(self.hist,self.getmin()[1]) 
    
    if(len(self.hist)==1): 
      return False 
    if(len(self.hist)<mingen): 
      return False 
    if(len(self.hist)>hist): 
      self.hist = self.hist[1:] 
      
    fit = self.pop[self.getfit(0.5)] 
    var = np.var(self.hist) 
    return var<tol 



   
  def getmin(self): 
    """return the best member as (variables,cost)""" 
    
    minp = self.fitness.argsort()[0] 
    return (self.pop[minp],self.fitness[minp]) 



poptest.py

#!/usr/bin/env python
#
# This script can be used to test the Population class with various
# optimization test functions.
#
# Author: Joshua A Haas
# Data: 2014-12-01

import math,time
import numpy as np
from population import Population

VALID = (['ackley','sphere','rosenbrock','beale','goldstein',
          'booth','bukin6','matyas','levi13','threehump',
          'easom','crosstray','eggholder','holdertable','mccormick',
          'schaffer2','schaffer4','styblinski','simionescu'])

FUNCTION = 'simionescu'

def main():
  """run the algorithm on the selected FUNCTION"""
  
  # get the parameters for the chosen FUNCTION
  (fitness,cons,mins,maxs,globmin) = getfunc(FUNCTION)
  
  # setup the Population
  p = Population(fitness,cons,mins,maxs,pop_size=1000)
  p.randpop()
  
  # keep track of iterations and time the algorithm
  iters = 0
  t1 = time.time()
  
  # run for up to 10000 generations, or until convergence
  # print current best every 10 generations
  for i in xrange(0,int(1e3)):
    add = p.evolve(maxiter=10,tol=1e-12,hist=100,mingen=100)
    iters += add
    m = p.getmin()
    x1 = m[0][0]
    x2 = m[0][1]
    y = m[1]
    print str(iters).zfill(5)+': ['+str(x1)+','+str(x2)+'] = '+str(y)
    if add<10:
      break
  
  # print final results



  print '\n'+str(iters)+' generations in '+str(time.time()-t1)+' 
secs'

  print '\nCalced: ['+str(round(x1,6))+','+str(round(x2,6))+'] = 
'+str(round(y,6))

  x1 = globmin[0][0]
  x2 = globmin[0][1]
  y = globmin[1]
  print 'Actual: ['+str(round(x1,6))+','+str(round(x2,6))+'] = 

'+str(round(y,6))

def getfunc(fun):
  """return the cost function, constraint function, mins, maxs, and
  globalmin information for the given string fun or raise an error
  if the given string is invalid"""
  
  if fun=='ackley':
    fun = ackley
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([0,0]),0)
  elif fun=='sphere':
    fun = sphere
    cons = nocons
    mins = np.array([-1000000,-1000000])
    maxs = np.array([1000000,1000000])
    globmin = (np.array([0,0]),0)
  elif fun=='rosenbrock':
    fun = rosenbrock
    cons = nocons
    mins = np.array([-1000000,-1000000])
    maxs = np.array([1000000,1000000])
    globmin = (np.array([1,1]),0)
  elif fun=='beale':
    fun = beale
    cons = nocons
    mins = np.array([-4.5,-4.5])
    maxs = np.array([4.5,4.5])
    globmin = (np.array([3,0.5]),0)
  elif fun=='goldstein':
    fun = goldstein
    cons = nocons
    mins = np.array([-2,-2])
    maxs = np.array([2,2])
    globmin = (np.array([0,-1]),3)
  elif fun=='booth':
    fun = booth
    cons = nocons
    mins = np.array([-10,-10])



    maxs = np.array([10,10])
    globmin = (np.array([1,3]),0)
  elif fun=='bukin6':
    fun = bukin6
    cons = nocons
    mins = np.array([-15,-3])
    maxs = np.array([-5,3])
    globmin = (np.array([-10,1]),0)
  elif fun=='matyas':
    fun = matyas
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([0,0]),0)
  elif fun=='levi13':
    fun = levi13
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([1,1]),0)
  elif fun=='threehump':
    fun = threehump
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([0,0]),0)
  elif fun=='easom':
    fun = easom
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([math.pi,math.pi]),-1)
  elif fun=='crosstray':
    fun = crosstray
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([1.34941,1.34941]),-2.06261)
  elif fun=='eggholder':
    fun = eggholder
    cons = nocons
    mins = np.array([-512,-512])
    maxs = np.array([512,512])
    globmin = (np.array([512,404.2319]),-959.6407)
  elif fun=='holdertable':
    fun = holdertable
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])



    globmin = (np.array([8.05502,9.66459]),-19.2085)
  elif fun=='mccormick':
    fun = mccormick
    cons = nocons
    mins = np.array([-1.5,-3])
    maxs = np.array([4,4])
    globmin = (np.array([-0.54719,-1.54719]),-1.9133)
  elif fun=='schaffer2':
    fun = schaffer2
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([0,0]),0)
  elif fun=='schaffer4':
    fun = schaffer4
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([0,1.25313]),0.292579)
  elif fun=='styblinski':
    fun = styblinski
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([-2.903534,-2.903534]),-78.33198)
  elif fun=='simionescu':
    fun = simionescu
    cons = simioinescucons
    mins = np.array([-1.25,-1.25])
    maxs = np.array([1.25,1.25])
    globmin = (np.array([0.84852813,-0.84852813]),-0.072)
  else:
    raise ValueError('Function "'+str(fun)+'" is not a valid 

function')
  return (fun,cons,mins,maxs,globmin)

# Minimum at f(0,0)=0 in x1:[-5,5] x2:[-5,5]
# Converged to f(0,0)=0 in [136,135,135,136,133]
def ackley(genes):
  """cost function for the ackley function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-20*math.exp(-0.2*pow(0.5*(x1**2+x2**2),0.5))-
    math.exp(0.5*(math.cos(2*math.pi*x1)+math.cos(2*math.pi*x2)))+
    math.e+20)

# Minimum at f(0,0)=0 in x1:[-inf,inf] x2:[-inf,inf]
# Converged to f(0,0)=0 in [152,152,149,152,153]



def sphere(genes):
  """cost function for the sphere function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return x1**2+x2**2

# Minimum at f(1,1)=0 in x1:[-inf,inf] x2:[-inf,inf]
# Found f(12.179655,149.456782)=248.815412 in 239
# Found f(0.999779,0.999548)=0 in 299
# Found f(1.000038,1.000022)=0 in 588
# Found f(0.999897,0.999798)=0 in 543
# Found f(1.003006,1.006102)=0 in 277
def rosenbrock(genes):
  """cost function for the rosenbrock function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (100*pow(x2-x1**2,2)+pow(x1-1,2))

# Minimum at f(3,0.5)=0 in x1:[-4.5,4.5] x2:[-4.5,4.5]
# Converged to f(3,0.5)=0 in [121,121,118,125,122]
def beale(genes):
  """cost function for the beale function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (pow(1.5-x1+x1*x2,2)+
    pow(2.25-x1+x1*pow(x2,2),2)+
    pow(2.625-x1+x1*pow(x2,3),2))

# Minimum at f(0,-1)=3 in x1:[-2,2] x2:[-2,2]
# Found f(0,-1)=3 in [121,121,121,121,121]
def goldstein(genes):
  """cost function for the goldstein function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return ((1+pow(x1+x2+1,2)*(19-14*x1+3*x1**2-

14*x2+6*x1*x2+3*x2**2))*
    (30+pow(2*x1-3*x2,2)*(18-32*x1+12*x1**2+48*x2-

36*x1*x2+27*x2**2)))

# Minimum at f(1,3)=0 in x1:[-10,10] x2:[-10,10]
# Converged to f(1,3)=0 in [116,114,119,121,118]
def booth(genes):
  """cost function for the booth function"""
  
  x1 = genes[0]



  x2 = genes[1]
  return (pow(x1+2*x2-7,2)+pow(2*x1+x2-5,2))

# Minimum at f(-10,1)=0 in x1:[-15,-5] x2:[-3,3]
# Converged to f(-9.841941,0.968638)=0.001581 in 487
# Converged to f(-9.498291,0.902175)=0.005017 in 443
# Converged to f(-9.045733,0.818253)=0.009543 in 511
# Converged to f(-9.329035,0.870309)=0.00671 in 463
# Converged to f(-7.609899,0.579106)=0.023901 in 436
def bukin6(genes):
  """cost function for the bukin6 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (100*pow(abs(x2-0.01*x1**2),0.5)+0.01*abs(x1+10))

# Minimum at f(0,0)=0 in x1:[-10,10] x2:[-10,10]
# Converged to f(0,0)=0 in [115,114,115,118,113]
def matyas(genes):
  """cost function for the matyas function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.26*(x1**2+x2**2)-0.48*x1*x2)

# Minimum at f(1,1)=0 in x1:[-10,10] x2:[-10,10]
# Converged to f(1,1)=0 in [121,121,121,121,118]
def levi13(genes):
  """cost function for the levi13 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (math.sin(3*math.pi*x1)**2+((x1-1)**2)*
    (1+math.sin(3*math.pi*x2)**2)+((x2-1)**2)*
    (1+math.sin(2*math.pi*x2)**2))

# Minimum at f(0,0)=0 in x1:[-5,5] x2:[-5,5]
# Converged to f(0,0)=0 in [115,114,112,113,112]
def threehump(genes):
  """cost function for the threehump function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (2*x1**2-1.05*x1**4+(x1**6)/6+x1*x2+x2**2)

# Minimum at f(pi,pi)=-1 in x1:[-100,100] x2:[-100,100]
# Found f(pi,pi)=-1 in [129,132,131,131,135]
def easom(genes):
  """cost function for the easom function"""



  
  x1 = genes[0]
  x2 = genes[1]
  return (-math.cos(x1)*math.cos(x2)*
    math.exp(-((x1-math.pi)**2+(x2-math.pi)**2)))

# Minimum at f(+-1.34941,+-1.34941) in x1:[-10,10] x2:[-10,10]
# Found f(-1.349407,1.349407)=-2.062612 in 113
# Found f(1.349407,-1.349407)=-2.062612 in 107
# Found f(1.349407,1.349407)=-2.062612 in 108
# Found f(1.349407,1.349407)=-2.062612 in 113
# Found f(1.349407,-1.349407)=-2.062612 in 119
# Note that this function has 4 global minima
def crosstray(genes):
  """cost function for the crosstray function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-0.0001*(abs(math.sin(x1)*math.sin(x2)*
    math.exp(abs(100-math.sqrt(x1**2+x2**2)/math.pi)))+1)**0.1)

# Minimum at f(512,404.2319)=-959.6407 in x1:[-512,512] x2:[-512,512]
# Found f(482.353276,432.878972)=-956.918232 in 388
# Found f(482.352961,432.878628)=-956.918232 in 475
# Found f(482.353278,432.878967)=-956.918232 in 384
# Found f(480.755988,431.159998)=-956.03721 in 125
# Found f(482.35331,432.878999)=-956.918232 in 271
def eggholder(genes):
  """cost function for the eggholder function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-(x2+47)*math.sin(math.sqrt(abs(x2+x1/2+47)))-
    x1*math.sin(math.sqrt(abs(x1-(x2+47)))))

# Minimum at f(+-8.05502,+-9.66459)=-19.2085 in x1:[-10,10] x2:[-
10,10]

# Found f(-8.055023,-9.66459)=-19.208503 in 133
# Found f(-8.055023,9.66459)=-19.208503 in 131
# Found f(-8.055023,9.66459)=-19.208503 in 137
# Found f(8.055023,-9.66459)=-19.208503 in 134
# Found f(8.055023,9.66459)=-19.208503 in 129
# Note that this function has 4 global minima
def holdertable(genes):
  """cost function for the holdertable function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-abs(math.sin(x1)*math.cos(x2)*



    math.exp(abs(1-math.sqrt(x1**2+x2**2)/math.pi))))

# Minimum at f(-0.54719,-1.54719)=-1.9133 in x1:[-1.5,4] x2:[-3,4]
# Found f(-0.547198,-1.547198)=-1.913223 in 113
# Found f(-0.547198,-1.547198)=-1.913223 in 114
# Found f(-0.547198,-1.547198)=-1.913223 in 111
# Found f(-0.547198,-1.547198)=-1.913223 in 113
# Found f(-0.547198,-1.547198)=-1.913223 in 108
def mccormick(genes):
  """cost function for the mccormick function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (math.sin(x1+x2)+(x1-x2)**2-1.5*x1+2.5*x2+1)

# Minimum at f(0,0)=0 in x1:[-100,100] x2:[-100,100]
# Found f(0,0)=0 in [131,131,127,133,117]
def schaffer2(genes):
  """cost function for the schaffer2 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.5+((math.sin(x1**2-x2**2)**2-0.5)/
    (1+0.001*(x1**2+x2**2))**2))

# Minimum at f(0,1.25313)=0.292579 in x1:[-100,100] x2:[-100,100]
# Found f(99.514633,-97.706601)=0.500097 in 123
# Found f(99.992107,99.999962)= 0.500095 in 155
# Found f(99.337472,98.360113)=0.500096 in 189
# Found f(-99.671221,99.553099)=0.500094 in 161
# Found f(99.99199,99.021126)=0.500093 in 229
def schaffer4(genes):
  """cost function for the schaffer4 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.5+((math.cos(math.sin(abs(x1**2-x2**2)))-0.5)/
    (1+0.001*(x1**2+x2**2))**2))

# Minimum at f(-2.903534,-2.903534)=-78.33198 in x1:[-5,5] x2:[-5,5]
# Found f(-2.903534,-2.903534)=-78.332331 in [119,114,117,118,117]
def styblinski(genes):
  """cost function for the styblinski function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (((x1**4-16*x1**2+5*x1)+(x2**4-16*x2**2+5*x2))/2)

# Minimum at f(+-0.84852813,-+0.84852813)=-0.072 in x1:[-1.25,1.25] 



x2:[-1.25,1.25]
# Found f(-0.848592,0.848464)=-0.072 in 121
# Found f(0.848469,-0.848587)=-0.072 in 118
# Found f(-0.848477,0.848579)=-0.072 in 126
# Found f(0.848626,-0.84843)=-0.072 in 124
# Found f(-0.84852,0.848535)=-0.072 in 126
def simionescu(genes):
  """cost function for the simionescu function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.1*x1*x2)

def simioinescucons(genes):
  """constraint function for the simionescu function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return x1**2+x2**2<=(1+0.2*math.cos(8*math.atan(x1/x2)))**2

def nocons(genes):
  """constraint function for functions with only mins and maxs"""
  
  return True

if __name__ == '__main__':
  main()



genetic-wifi.py

#!/usr/bin/env python
#
# This script optimizes the placement of a Wireless Access point in a
# specific room.
#
# Author: Joshua A Haas
# Date: 2015-04-28

import math,time
import numpy as np
from population import Population
from room import Room
from wall import Wall

WALL_ATTEN = 5
FREQ = 2400000000
LIGHT = 300000000

# table in the corner
LOC1 = (4,36,1)
# sofa farthest from ethernet
LOC2 = (2,23,1)
# armchair next to ethernet
LOC3 = (8,18,1)
# bedroom 1 desk
LOC4 = (21,6,1)
# bedroom 2 desk
LOC5 = (23,3,1)

locs = [LOC1,LOC2,LOC3,LOC4,LOC5]

r = Room()
r.addwall(0,40,32,40)
r.addwall(0,15,0,40)
r.addwall(0,15,18,15)
r.addwall(12,0,12,15)
r.addwall(12,0,32,0)
r.addwall(32,0,32,32)
r.addwall(32,34,32,36)
r.addwall(32,39,32,40)
r.addwall(22,35,32,35)
r.addwall(22,19,22,35)
r.addwall(22,31,32,31)
r.addwall(22,0,22,15)
r.addwall(21,15,23,15)
r.addwall(20,19,24,19)
r.addwall(27,19,32,19)



r.addwall(26,15,32,15)
r.addwall(29,18,29,19)
r.addwall(29,14,29,16)
r.addwall(29,11,32,11)
r.addwall(29,11,29,12)
r.addwall(12,11,15,11)
r.addwall(15,11,15,12)
r.addwall(15,14,15,15)

def main():
  
  # Define mins and maxs
  
  # Setup population
  mins = np.array([0,0])
  maxs = np.array([32,40])
  p = Population(fitness,cons,mins,maxs,pop_size=1000)
  p.randpop()
  
  iters = 0
  t1 = time.time()
  
  # run for up to 10000 generations, or until convergence
  # print current best every 10 generations
  for i in xrange(0,int(1e3)):
    add = p.evolve(maxiter=10,tol=1e-12,hist=100,mingen=100)
    iters += add
    m = p.getmin()
    x1 = m[0][0]
    x2 = m[0][1]
    y = m[1]
    print str(iters).zfill(5)+': ['+str(x1)+','+str(x2)+'] = '+str(y)
    if add<10:
      break
  
  # print final results
  print '\n'+str(iters)+' generations in '+str(time.time()-t1)+' 

secs'
  print '\nCalced: ['+str(round(x1,6))+','+str(round(x2,6))+'] = 

'+str(round(y,6))

# Constraint function to keep members inside the house
def cons(genes):
  
  x = genes[0]
  y = genes[1]
  
  # Bounding box of the layout
  if(x<=0 or x>=32 or y<=0 or y>=40):



    return False
  
  # Do not include blank area in bottom left
  if(x<=12 and y<=15):
    return False
  
  # Do not include bathroom or utility room
  if(x>=22 and x<=32 and y>=19 and y<=31):
    return False
  
  # Do not allow the point to be closer than 1 ft to any loc
  for loc in locs:
    wall = Wall(x,y,loc[0],loc[1])
    if(wall.length<1):
      return False
  
  return True  

# Fitness function to determine optimal placement given weighted 
locations

def fitness(genes):
  
  total = 0
  for loc in locs:
    wall = Wall(genes[0],genes[1],loc[0],loc[1])
    
    fspl = 20*math.log(4*math.pi*wall.length*0.3048*FREQ/LIGHT,10)
    amp = fspl + WALL_ATTEN*r.num_intersects(wall)
    
    # below 20 db gives no improvement
    amp = max(amp,20)
    
    total += loc[2]*amp
  
  return total/len(locs)

if __name__ == '__main__':
  main()



room.py

#!/usr/bin/env python
#
# Room class to keep track of walls and calculate intersections
#
# Author: Joshua Haas

from wall import Wall

class Room:
  
  def __init__(self):
    
    self.walls = []
  
  def num_intersects(self,wall):
    """count number of intersects between the given wall and all 

walls in this room"""
    
    count = 0
    for w in self.walls:
      if wall.intersects(w):
        count += 1
    
    return count
  
  def addwall(self,x1,y1,x2,y2):
    """add the wall checking for duplicates"""
    
    wall = Wall(x1,y1,x2,y2)
    for w in self.walls:
      if wall==w:
        return
    
    self.walls.append(wall)

  def ft2m(self):
    """convert all walls from ft to meters"""
    
    for w in self.walls:
      w.ft2m()



wall.py

#!/usr/bin/env python
#
# Wall class to hold points and perform operations
#
# Author: Joshua Haas

import math

HORIZ = 0
VERT = 1

class Wall:
  
  def __init__(self,x1=None,y1=None,x2=None,y2=None):
    """Create a new wall"""
    
    self.x1 = x1
    self.y1 = y1
    self.x2 = x2
    self.y2 = y2
    
    if(self.x1==self.x2 or self.y1==self.y2):
      self.length = abs(self.x1-self.x2)+abs(self.y1-self.y2)
    else:
      self.length = math.sqrt((self.x1-self.x2)**2+(self.y1-

self.y2)**2)
    
    #assert self.length>0, 'Walls must have greater than 0 length'
  
  def __eq__(self,obj):
    """override equals operator"""
    
    if not isinstance(obj,Wall):
      return False
    
    if(self.x1==obj.x1 and self.y1==obj.y1 and self.x2==obj.x2 and 

self.y2==obj.y2):
      return True
    if(self.x1==obj.x2 and self.y1==obj.y2 and self.x2==obj.x1 and 

self.y2==obj.y1):
      return True
    
    return False
  
  def __ne__(self,obj):
    """override not equals operator"""
    



    return not self==obj
  
  
  def intersects(self,other):
    """return true if this wall intersects the other"""
    
    # they do intersect if they share vertices
    if((self.x1==other.x1 and self.y1==other.y1) or 

(self.x2==other.x2 and self.y2==other.y2)):
      return True
    
    # don't intersect if bounding boxes don't
    if(max([self.x1,self.x2])<min([other.x1,other.x2])):
      return False
    if(max([self.y1,self.y2])<min([other.x1,other.x2])):
      return False
    
    # check if points are on left and right of other line
    return 

((self.ccw(self.x1,self.y1,other.x1,other.y1,other.x2,other.y2)
        != 

self.ccw(self.x2,self.y2,other.x1,other.y1,other.x2,other.y2)) and
        (self.ccw(self.x1,self.y1,self.x2,self.y2,other.x1,other.y1)
        != 

self.ccw(self.x1,self.y1,self.x2,self.y2,other.x2,other.y2)))
    
  def ccw(self,x1,y1,x2,y2,x3,y3):
    """determine orientation of points"""
    
    return (y3-y1)*(x2-x1) > (y2-y1)*(x3-x1)

  def ft2m(self):
    """convert the values from feet to meters"""
    
    self.x1 *= 0.3048
    self.y1 *= 0.3048
    self.x2 *= 0.3048
    self.y2 *= 0.3048


