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Abstract—Recently,  numerous  so-called  “meta-heuristic”
algorithms have been proposed to solve optimization problems.
Most of these find inspiration from nature rather than using a
mathematically devised process.   One example is the idea of a
genetic algorithm, also known as evolutionary optimization, that
attempts  to  solve  optimization  problems  by  modeling  the
processes  driving  evolution,  namely  mutation  and  natural
selection.   These  meta-heuristic  algorithms,  including  genetic
algorithms,  hope  to  find  the  global  optimum  (given  enough
iterations),  rather  than  the  much-dreaded  local  optimum.
However, the classic genetic algorithm is comprised entirely of
binary variables, and is thus intrinsically discrete or categorical
in nature.  It has been used, for example, to solve the traveling
salesman problem.  It is possible to extend genetic optimization
algorithms to the continuous case, where they are called “real-
valued”  genetic  algorithms.   In  this  case  each  variable  is
continuous  and  can  take  on  an  infinite  number  of  different
values.   After  a  brief  literature  review  in  the  field  of  genetic
algorithms,  this  paper  examines  the  creation  of  a  real-valued
genetic algorithm in the Python programming language and its
performance on numerous stock optimization functions.
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I. INTRODUCTION

At  its  simplest,  optimization  is  applying  a  technique  or
algorithm to  find  the  minimum  or  maximum of  some  cost
function.  For a very easy example, such an algorithm would
locate the point (0,0) with a value of 0 as the minimum of the
function   f(x) = x2.  One of the easiest algorithms to understand
is the Steepest Descent algorithm, which works by calculating
the derivative of the cost  function.  First,  a  random starting
point is chosen somewhere in the function's valid input space,
for example at   x = 1.  Then, the gradient (multi-dimensional
derivative) of the function at that point is calculated.  In our 1D
example,  the gradient is the derivative,  and at   x = 1   the
derivative is   f '(x) = 2x = 2(1) = 2.  The algorithm then moves
in the opposite direction of the gradient.  In our  example, since
the gradient is positive, the algorithm moves in the negative x
direction, thus getting closer to the minimum at   x = 0.  The
process of taking the derivative and moving the current point is
repeated  until  some  stopping  condition  is  met,  for  example
when the decrease in the cost function from one iteration to the
next is less than a threshold value.  The update rule for the
Steepest  Descent algorithm is shown below as Eq. 1, where
xk+1   is the next value,   xk   is the previous value,   αk   is a

variable step size,   ∇   is the gradient,   and   f (xk)   is the cost
function evaluated at   xk   [1].

x(k+1 ) = xk− αk ∇ f (xk )                      Eq. 1

However, one of the major shortcomings of this algorithm
(and  other  gradient-based  algorithms)  is  its  tendency  to
converge to local minima.  For example, the function presented
below as Eq. 2 and shown in Fig. 1 has a global minimum at
x = 0, but it also has local minima at x = ±2π.  If the Steepest
Descent algorithm began at, say,   x = 5  it would very likely
converge to the local minimum at  x = 2π  since the gradient at
x = 5   is negative.

f (x) = | x |− 2cos(x )                    Eq. 2

             Figure 1.  Graph of Eq. 2 showing local minima.

A related problem to that of local minima is functions with
large search spaces.  For example, in the Traveling Salesman
Problem, a salesman wants to visit a number of cities while
traveling the shortest distance possible and visiting each city



only once.  The locations of each city are known, and result in
different distances between each pair of cities.  The only way
to find the true global minimum is to evaluate every possible
permutation.   However,  this  becomes  computationally
infeasible  very  quickly,  since  the  number  of  permutations
increases factorially.  For example, for 20 cities there are 121.6
quadrillion permutations.  This large of a search space likely
contains  countless  local  minima that  traditional  optimization
techniques would get stuck in.

One  solution  to  the  problem of  local  minima  and  large
search  spaces  are  stochastic  approaches.   In  these  methods
some  degree  of  randomness  is  introduced  in  the  hopes  of
randomly hitting the global minimum (or at least getting close
to  it).   Many  of  these  stochastic  approaches  are  based  on
phenomena  observed  in  nature,  giving  rise  to  so-called
biological  algorithms.   One  such  algorithm  is  the  genetic
algorithm, which is based on the theory of evolution.  It should
be  noted  that  few  if  any  of  these  algorithms  have  any
mathematical backing or proof.  Usually they “just work.”

Evolution consists of two key concepts,  natural  selection
and mutation.  Natural selection is the process by which more
“fit” individuals in a population are more likely to spread their
genes via reproduction.  For example, a cat with a better sense
of  smell  than  other  cats  could be more  likely  to  find food.
Therefore,  this cat  is  more likely to survive long enough to
reproduce,  and  its  children  will  likely  inherit  its  improved
sense of smell.  Since these children are also more likely to
survive than their peers, they are also more likely to reproduce,
and after  enough generations  the  majority  of  the  population
will have this better sense of smell.

The  process  of  genetic  recombination  inherent  in
reproduction of most organisms is also a key factor in natural
selection.  Every trait is determined by a gene encoded in an
organism's DNA.  When two organisms reproduce, each of the
child's genes is randomly selected from either the mother or
father.  This results in novel combinations of  genes in each
generation and increases the population's diversity.

Entirely new, never seen before, genes can be introduced to
a population via mutation.  Sometimes during the process of
reproduction, instead of receiving the mother or father's version
of  a  particular  genes,  the  child  instead  receives  a  mutant
version.   This  mutation  is  completely  random  and  is
completely unrelated to the genes of the mother or father.  In
this  way,  new  genes  are  introduced  to  the  population.   A
beneficial  mutation  will  eventually  spread  to  the  entire
population via natural selection, while a detrimental mutation
will eventually die out by the same process.

The Simple Genetic Algorithm (SGA) is shown below as
Algorithm 1.  It models every individual as an array of binary
numbers, where one or more of the numbers code a specific
gene [2].

Algorithm 1.  Simple Genetic Algorithm.

1. Generate a random population of individuals.

2. Evaluate the fitness of every individual.

3. Breed (crossover and mutate) the most fit individuals
from the current population to produce offspring.

4. Replace the current population with their offspring.

5. Repeat steps 2-4 until some stopping criteria.

In  step  1,  every  individual  is  initialized  as  a  random
sequence of 1s and 0s.  In step 2, the fitness function generates
some fitness value given an individual's binary representation.
Oftentimes the binary representation must first be decoded into
a more meaningful set of numbers before the fitness function
can  be  applied.   In  step  3,  two  individuals  are  randomly
selected from the most fit  individuals  in the population (for
example, from the top 50%).  These two individuals (referred
to as  the  mother  and  father)  are  then  bred  to  create  a  new
individual (referred to as the child).  First, the genes from the
mother and father undergo crossover (although there are many
different crossover schemes, we will only mention one here).
A point is randomly chosen on the binary genetic array.  Every
gene to the left of the point is taken from the mother, and every
gene to the right of the point is taken from the father.  It should
be noted that if the mother and father have the same value for a
specific gene, then the child is guaranteed to have that value
(barring mutation).  Every gene is also subject to the possibility
of a random mutation (simply flipping the bit) based on some
mutation rate.   In step 4, the current population is completely
forgotten and replaced by the children bred in step 3.  Steps 2-4
are then repeated until some stopping criteria is met.  Each full
iteration of the algorithm is referred to as a generation [2].

Continuous problems (such as finding the minimum of a
continuous function like Eq. 2) can be modeled using the SGA.
However, this requires modeling each variable as a series of
binary numbers, resulting in quantization error.  It also reduces
the speed of the algorithm since the binary genes must first be
converted  into  a  decimal  representation  before  the  cost
function can be computed [3].

Inherently continuous genetic algorithms, known as Real-
Valued Genetic Algorithms, have been proposed to overcome
this shortcoming of the SGA.  In such algorithms, each gene
(variable)  is  a  continuous  decimal  value.   This  requires
modified  crossover  and  mutation  methods,  but  otherwise
functions  the  same  as  the  SGA.   These  differences  will  be
explored further in the Methods section [3].

II. LITERATURE REVIEW

A. Overview of Stopping Criteria

The stopping criteria of a genetic algorithm (actually any
meta-heuristic algorithm) has traditionally been uncertain and
variable.   Perhaps the most common stopping criterion is to
simply  terminate  after  a  preset  number  of  generations.
However,  this  is  inaccurate  at  best  and  cannot  guarantee
convergence to a global minimum without knowing the shape
of the fitness function.  Another form of stopping criteria is the
so-called  genotypical  stopping  criterion,  which  stops  the
algorithm when the variance in the genes of the population has
fallen below some threshold.  Finally, there exist the so-called
phenotypical stopping criterion, which stop the algorithm when
the progress (i.e. reduction in the fitness function) is less than
some threshold for some number of generations  [4].



Markov  Chains  are  a  technique  used  to  model  the  state
space of a random process that depends only on the current
state (i.e. memoryless).  The transition from one state to every
other possible state is assigned a probability.  This modeling
technique is perfect for evolutionary algorithms since the next
generation  only  depends  on  the  parents  in  the  current
generation.   Using  Markov  Chains  to  model  genetic
algorithms, it can be shown that any population can be reached
from  any  other  population  as  long  as  the  mutation  rate  is
nonzero.   This  means  that,  as  the  number  of  generations
increases, the probability of reaching a specific population, and
thus the probability of visiting a specific individual, increase.
Moreover, this guarantees that, given enough generations, the
genetic  algorithm will  eventually  find  the  global  minimum.
While  this  guarantees  eventual  convergence,  without  further
analysis, said convergence could potentially take longer than
an exhaustive search [4].

B. Elitist Genetic Algorithms

The Elitist  Genetic  Algorithm (EGA) introduces  a  slight
modification to the SGA.  In this version, the children must
compete  with  their  parents  in  order  to  be  part  of  the  new
population.   In  other  words,  the  current  generation  is  not
simply forgotten  and  replaced  by  its  children.   Instead,  the
children only replace parents if the children are more fit than
the  parents.   This  guarantees  that  the  algorithm  never
backtracks  to  a  worse  fitness  value,  since  it  will  always
remember  its  current  best  individual.   In  addition,  good
solutions are never lost during the search process as may be the
case with the SGA.  The elitist approach is also less sensitive to
undersized populations, and lends itself well to hybridization
with gradient-descent methods [5].

In the elitist version, using Markov Chains, an upper bound
for the number of  generations required  to  guarantee  that  all
individuals have been visited can be computed.  This bound is
presented below as Eq. 3, where   t   is the number generations,
α   is the probability of having visited every individual,   n   is
the population size,   μ   is the mutation rate,   and   l   is the
length of the chain representing an individual [4].

t ≥ ⌈ ln (1−α)

n ln(1−min {μ
l ,(1−μ)

l
}) ⌉            Eq. 3

Unfortunately the above equation only applies in the case
of the classic (i.e.  discrete or binary)  SGA.  For continuous
elitist genetic algorithms, Bhandari et al. used the variance of
individuals to define a stopping criterion.  The algorithm must
first  remember  the  most  fit  individual  for  the  past  n
generations.   Then  the  variance  of  these  fitness  values  is
calculated  and  compared  to  a  threshold.   If  it  is  below the
threshold then the algorithm stops.  However, the authors note
that the parameter   n   still depends on the shape of the fitness
function.  The calculated variance is shown below in Fig. 2, to
proves that for most problems it does asymptotically approach
zero, lending itself well to a convergence criterion [6].

     Figure 2.  Variance of past best versus generation.

C. Adaptive Crossover and Mutation Rates

The population size, crossover rate, and mutation rate are
the  three  most  important  parameters  in  most  genetic
algorithms.   However,  choosing  optimum  or  even  “good
enough”  values  is  highly  problem  dependent  and  not  well
understood at this time.  Therefore, Lin at al. sought to develop
methods  for  adaptive  crossover  and  mutation  rates.   In
addition, they suggest starting the algorithm with a very high
mutation rate of 0.5 to help promote searching.

During  the  breeding  step  in  each  generation,  the  fitness
values of every pair of parents and their respective offspring
are compared.  If on average the parents have a higher fitness
value, then crossover has resulted in a decrease in fitness and
the crossover rate is lowered.  If on average the children have a
higher fitness value, then crossover has resulted in an increase
in  fitness  and  the  crossover  rate  is  increased.   This  is  also
preformed  to  compare  the  children  before  and  after  the
mutation  step.   If  pre-mutation  children  have,  on  average,
higher fitness values, then mutation has decreased the fitness of
the  population and  the  mutation  rate  is  decreased.   If  post-
mutation children have, on average, higher fitness values, then
mutation has  increased the fitness of the population and the
mutation rate is increased.  Both the crossover and mutation
rate are capped at minimum and maximum values so both are
always  higher  than  zero  and  lower  than  one.   This  scheme
outperformed  existing  crossover  and  mutation  selection
techniques on several optimization problems [2].

D. Differential Crossover

Although genetic algorithms were inspired by the process
of evolution, nothing requires that their design be restricted to
the exact parameters of real-life human evolution.  One such
proposal  seeks  to  inhibit  premature  convergence  (i.e.  local
minimum)  using  so-called  Differential  Evolution  (DE)
crossover in continuous genetic algorithms.  First, only a subset
of  the  population  is  selected  for  breeding  and  potential
replacement.  For each selected individual, its  replacement is
calculated  by  the  formula  shown  below  as  Eq.  4,  where
chij(t+1)   is the “child,”   chij(t)   is the “parent,”   F1   and   F2

are random numbers in the range   (0,1) ,   chpj(t)   and   chqj(t)
are randomly selected individuals from the current population,
and   chbestj(t)   is the individual in the current population with
the best fitness value [3].

chij(t+1) = chij(t) + F1(chpj(t )− chqj(t ))
+ F2(chbestj (t ) − chij(t))

 Eq. 4



Each individual is  only replaced if its replacement  has a
higher  fitness  value  than  itself,  making  this  scheme  elitist.
Moreover, this technique does not have a crossover probability
or mutation probability  as  in  most other  genetic  algorithms.
This DE crossover seeks to lessen premature convergence and
thus force the algorithm to find a global minimum rather than a
local  minimum.   The  same  authors  then  combine  the  DE
process  with  traditional  crossover  and  mutation to  come up
with  their  Simplified  DE  (SDE)  technique.   The  update
equation is shown below as Eq. 5, using the same symbols as
Eq. 4 except for   CR   is the crossover rate and   chrj(t)   is a
third random individual from the current population.

chij(t+1) = chpj(t ) + CR (chqj(t ) − ch rj( t )) Eq. 5

The  results  from  the  DE  and  SDE  crossover  schemes
significantly outperformed SGA and EGA on many functions
in the authors' tests.  The SDE scheme is pictured in Fig. 3
below to emphasize that individuals are updated based on the
mutual distance between population members.

        Figure 3.  Geometric interpretation of SDE scheme.

E. Radioactive Zones

Another  proposal  to  decrease  the  likelihood  of  local
convergence is the introduction of so-called Radioactive Zones.
Whenever  the  algorithm begins  to  stagnate,  (i.e.  population
genes are barely changing), the algorithm creates a Radioactive
Zone where the probability of mutation is 100%.  The area of
stagnation corresponds to a local  minimum, so whenever an
individual  is  created  inside  the  radioactive  zone  it  will
immediately leave it via mutation. In addition, every time an
individual is mutated by a radioactive zone, the mutation level
in that zone is decreased.  If the population stagnates for more

generations than a threshold value, the algorithm stops.  When
adding  this  to  the  SDE  crossover  scheme  described  in  the
previous  section,  Hrtska  et  al.  found  that  the  resulting
algorithm converged for all test functions, albeit often slower
than competing algorithms [3].

F. Real-World Applications

1) Image Processing
Mashohor et al. used en EGA in their project for printed

circuit board inspection.  The goal of the project was to decide
whether a series of circuit boards were acceptable or note by
comparing a photograph of each board to a reference image.
However, as boards are sent down the conveyor belt, they are
almost always displaced or rotated relative to the center and
orientation of the camera.  Therefore, a simple pixel by pixel
comparison with the reference image is impossible.

The authors thus implemented an EGA in order to estimate
the displacement and rotation of the test board.  According to
previous  work,  genetic  algorithms  have  produced  fast  and
accurate  matching  while  providing  scaling  and  rotation
consistency.  The fitness function in this case was the similarity
of  the  test  and  reference  images  pixel  by  pixel.   Each
individual was a 19-bit binary string, with 9 bits to represent
rotation, 5 bits to represent x-axis displacement, and 5 bits to
represent y-axis displacement.  They created 200 generations
with a population size of 18, crossover probability of 0.5, and
mutation probability of 0.01.  The displacements estimated by
the GA were accurate to within a few pixels out of 1600 pixels,
although  the  rotations  estimated  were  significantly  less
accurate [7].

2) Power Distribution
Another  potential  application  of  genetic  algorithms  is

power distribution optimization.  For example, Tomoiaga et al.
developed a modified genetic algorithm to find the distribution
system with minimum active power loss.  The genes in this
application  were  binary,  with  each  genes  representing  a
specific  link  between  two  points  on  the  graph  of  power
distribution relays.  The branch list of a sample graph is shown
below in Fig. 4a [8].

                        Figure 4a.  Branch list of the graph.

The  graph  resulting  from  coding  a  sample  population
member is shown below in Fig. 4b.  Applying the algorithm to
several test problems, the authors found a reduction in power
loss  of  up  to  50%  depending  on  the  problem.   This  was
achieved with only 10 population members and under a dozen
generations  using  the  C++  programming  language.   This
algorithm  performed  significantly  better  in  terms  of  both
computation  time  and  final  result  than  traditional  power
distribution optimization algorithms.



                      Figure 4b.  Branch lists from decoding a.

3) Neural Network Training
Another very popular field in engineering and mathematics

today  is  Pattern  Recognition  and  Machine  Learning.   In  a
pattern recognition problem, the goal is to predict the classes of
a set of observations, given their features, after training on a set
of labeled data.  For example, the classes could be male and
female,  and  the  features  height  and  hair  length.   First,  in
training, the classifier (i.e. algorithm) is presented with a set of
observations that  note the height  and hair  length of  random
men and women.   It  uses  these  data to  form some internal
model.  Next, in prediction, it is given a height and hair length,
and outputs a prediction as to which class it  “believes” that
observation belongs, either male or female.

One  popular  classifier  is  the  Neural  Network,  which
consists of “neurons” that activate depending on the features.
In  order  to  train  a  neural  network,  however,  requires
optimizing the weights in each neuron based on the training
data.   Although  this  is  traditionally  done  using  a  gradient
descent algorithm, Ojha et al. instead used a genetic algorithm.

The authors sought to identify the presence of dangerous
gases  in  Manholes  in  order  to  keep  maintenance  personnel
safe.   These  gases  can  include  Hydrogen  Sulfide  (H2S),
Ammonia  (NH3),  and  Methane  (CH4),  all  of  which  are
extremely dangerous at significant concentrations.  The easiest
solution is to use an individual sensor for each dangerous gas
type; however, most of these sensors also react to the presence
of other gases.  This gives an array of sensors significant cross-
sensitivity  that  results  in  inaccurate  results.   Therefore,  the
authors  seek  to  use  a  neural  network  classifier  to  improve
prediction.   Specifically,  they  used  a  real-valued  genetic
algorithm to optimize the weights for a two layer feed-forward
neural  network  in  the  Java  programming  language.   The
performance  met  the  minimum  requirements,  but  was  not
compared to a neural network trained via gradient descent [9].

III. METHODS

Since  most  meta-heuristic  algorithms are  intuitive  rather
than mathematically rigorous, I decided to implement a real-
valued genetic algorithm on my own, and then compare my
results  with the  recommendations  in  literature.   I  chose  the
Python programming language because I am very familiar with
it  and  it  is  conducive  to  fast  scripting of  a  wide  variety  of
applications.

Two main files were created, namely “population.py” and
“poptest.py”.  The “population.py” file contains a single class,
namely “Population” that can be used to setup and execute a
genetic algorithm optimization problem.  During initialization,
the user  must specify a fitness function,  constraint  function,
array  of  variables  minima,  and  array  of  variable  maxima.

Optional  parameters  include providing a  starting population,
changing the population size, setting the kill rate, and setting
the mutation rate.  The algorithm is run by calling the “evolve”
method  on  the  created  Population.   The  user  can  specify
whether  to check for  convergence,  the maximum number of
iterations,  and the tolerance  for  convergence.   Note that  the
“scipy” package is required to run the algorithm [11].  These
files can be found in Appendix A.

The algorithm implemented  in  “population.py”  is  shown
below as Algorithm 2:

Algorithm 2

1. Generate a random population of individuals.

2. Evaluate the fitness of every individual.

3. Kill  (remove)  the  least  fit  individuals  based  on the
“kill_rate” parameter.

4. Breed  (crossover  and  mutate)  the  remaining
individuals  from  the  current  population  to  produce
offspring to replace those killed.

5. Repeat steps 2-4 until standard deviation is less than
some threshold.

The algorithm differs from other methods presented in the
beginning  of  the  paper  in  a  few  ways.   First,  the
implementation  of  elitism  is  slightly  different  than  in  other
papers.  In most of the literature,  elitism is implemented per
family.  In other words, during breeding, a mother and father
produce two offspring.  The two most fit individuals from this
“family” of four are then chosen to enter the next population.
In this implementation, the least fit  half of the population is
discarded.   Then  the  remaining  individuals  are  bred  to
repopulate and reach the desired population size.

In  addition,  the  crossover  method  is  different  than  that
proposed in other literature.  Given two individuals, suggested
methods  include  taking  the  mean  of  their  genes,  taking  a
random point linearly between the two individuals, and taking
a  random  point  linearly  that  could  lie  outside  the  two
individuals.  This implementation instead generates a random
child  using  a  Gaussian  distribution  with  mean  equal  to  the
mean of the parents' genes, and standard deviation equal to the
distance between the parents and the mean.  By the Gaussian
rule of thumb, this implies that about 68% of children will fall
near  the  mean and  between  the  two parents,  while  32% of
children will fall outside of the two parents.  This promotes
convergence  while  still  allowing  the  population  to  search
nearby locations.

Finally, this implementation uses a modified convergence
criteria  referred  to  in  [6]  as  Population  Variance.   If  the
standard deviation of the most fit half of the population is less
than the “tol” parameter, the algorithm stops.  Therefore,  as
long as the mutation rate is less than 0.5, and the mutation rate
is  less  than  the  kill  rate,  the  algorithm  should  converge
(intuitively, not mathematically) given enough generations.  

The algorithm was tested on various functions five times
each and the results recorded.  Each test was performed using a
population of size 1000, 10000 max iterations, a kill rate of 0.5,



a mutation rate of 0.5, and a tolerance of 10-12.  These tests
were carried out using “poptest.py” by changing the value of
the global variable “FUNCTION” to any of the values in the
array “VALID”.  The “poptest.py” script prints the current best
individual  every  10  generations,  and  terminates  after  10000
generations.   At the end,  it  prints the time elapsed over the
simulation, the best individual in the population, and the true
global minimum.

IV. RESULTS

The results of the simulations are shown above in Table 1.
Each  function  was  simulated  five  times.   Only  8/19  of  the
functions met the convergence criteria and terminated before
reaching the full 10000 generations.  On the other hand, the
algorithm found the global minimum every time for 16/19 of
the functions.  The “schaffer4” function was the only function
for  which  the  algorithm  never  found  the  global  optimum.
Images  and  definitions  of  the  functions  can  be  found  in
Appendix B.

V. DISCUSSION AND CONCLUSIONS

The convergence criteria used in the algorithm did not work
well in practice, since 11/19 of the functions did not converge.
Moreover, 10/11 of the functions that did not converge did find
the global minimum.  In fact, for those 10 functions, in most
cases the algorithm found the global minimum (or at least a
point very close to the global minimum) in only a few hundred
generations.  The rest of the algorithm was likely attempting to
descend  a  hill,  which  is  notoriously  difficult  for  genetic

algorithms.  The performance would likely improve
significantly  by  increasing  the  “tol”  parameter,  finding  an
estimate of the global minimum, and then using a gradient-
descent method to gain precision.

Overall I think these results are pretty cool, since none of
the parameters of the algorithm were changed from function to
function.   This  implies  that  (at  least  in  low  dimensional
problems)  genetic  algorithms  are  somewhat  independent  of
their  parameters.   Furthermore,  for  those  functions  that
converged, the number of iterations was fairly constant.  This
likely indicates that genetic algorithms are at least somewhat
independent of the random initial population.

As mentioned in [3], it is obvious that genetic algorithms
are not immune to getting stuck in local minima.  Although it
certainly did better than a gradient-descent method would have,
it  still  got  stuck  in  a  local  minimum at  least  once  for  3/19
functions.  It failed to find the global minimum even once for
the “schaffer4” function.

Although, these conclusions should be taken with a grain of
salt, since 5 simulations per function is nowhere near enough to
characterize performance with any statistical certainty.
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Table 1.  Results of genetic algorithm for various test functions (5 simulations each).

Function Converged Global Min Gen. Mean Gen. Max Gen. Min Err. Mean Err. Max Err.

ackley 5 / 5 5 / 5 91 92.4 94 0 0 0

sphere 5 / 5 5 / 5 132 132.8 134 0 0 0

rosenbrock 0 / 5 4 / 5 10000 10000 10000 0 5.28 26.4

beale 5 / 5 5 / 5 152 175 249 0 0 0

goldstein 0 / 5 5 / 5 10000 10000 10000 0 0 0

booth 5 / 5 5 / 5 108 110.2 112 0 0 0

bukin6 5 / 5 1 / 5 444 480.4 512 0.0018 0.0078 0.0138

matyas 5 / 5 5 / 5 129 135.2 144 0 0 0

levi13 5 / 5 5 / 5 98 99 101 0 0 0

threehump 5 / 5 5 / 5 94 95.6 97 0 0 0

easom 0 / 5 5 / 5 10000 10000 10000 0 0 0

crosstray 0 / 5 5 / 5 10000 10000 10000 0 0 0

eggholder 0 / 5 5 / 5 10000 10000 10000 0 0 0

holdertable 0 / 5 5 / 5 10000 10000 10000 0 0 0

mccormick 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer2 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer4 0 / 5 0 / 5 10000 10000 10000 0.208 0.208 0.208

styblinski 0 / 5 5 / 5 10000 10000 10000 0 0 0

simionescu 0 / 5 5 / 5 10000 10000 10000 0 0 0



Computational Intelligence Society Workshop at the University
of Rhode Island.

Finally,  the  pictures  in  Appendix  B  are  courtesy  of
Wikipedia under the Creative Commons License.
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Appendix A.1 – population.py

#!/usr/bin/env python3

import time,random
import numpy as np

class Population:
    
  def __init__(self,fit,con,mins,maxs,
      pop=None,pop_size=1000,kill_rate=0.5,mut_rate=0.25):
    """Create a new population for genetic optimization"""
    
    # Set required args
    self.fit_fun = fit
    self.con_fun = con
    self.mins = mins
    self.maxs = maxs
    
    # Set optional args
    self.pop = pop
    self.pop_size = pop_size
    self.kill_rate = kill_rate
    self.mut_rate = mut_rate
    
    # Other setup
    self.genes = len(mins)
    
    if self.pop is None:
      self.pop = np.zeros((self.pop_size,self.genes))
    
    self.fitness = np.zeros(self.pop_size)
    
    self.checkparams()
    
    random.seed(time.time())
  
  def checkparams(self):
    """test all parameters for validity"""
    
    # Type assertions
    assert callable(self.fit_fun), 'Parameter fit must be function'
    assert callable(self.con_fun), 'Parameter con must be function'
    assert isinstance(self.mins,np.ndarray), 'Parameter mins must be numpy.ndarray'
    assert isinstance(self.maxs,np.ndarray), 'Parameter maxs must be numpy.ndarray'
    assert isinstance(self.pop,np.ndarray), 'Parameter pop must be numpy.ndarray'
    assert isinstance(self.pop_size,int), 'Parameter pop_size must be int'
    assert isinstance(self.kill_rate,(int,float)), 'Parameter kill_rate must be int or float'
    assert isinstance(self.mut_rate,(int,float)), 'Parameter mut_rate must be int or float'
    
    # Individual assertions
    assert len(self.mins.shape)==1, 'Parameter mins must be row vector'
    assert len(self.maxs.shape)==1, 'Parameter maxs must be row vector'
    assert len(self.pop)==self.pop_size, 'Parameter pop must be of length pop_size'
    assert self.pop_size>0, 'Parameter pop_size must be greater than 0'
    assert (self.kill_rate>=0) and (self.kill_rate<1), 'Parameter kill_rate must be in [0,1)'
    assert (self.mut_rate>=0) and (self.mut_rate<1), 'Parameter mut_rate must be in [0,1)'
    
    # Dependant assertions
    assert self.pop.shape[0]==self.pop_size, 'Parameter pop must have pop_size rows'
    assert self.pop.shape[1]==self.genes, 'Parameter pop must have genes cols'
    assert self.mins.shape==self.maxs.shape, 'Parameters mins and maxs must be same shape'
    assert all(self.maxs>self.mins), 'Parameter maxs must be greater than mins'
  



  def randpop(self):
    """generate a random population"""

    for r in xrange(0,self.pop_size):
      self.pop[r,:] = self.getrandmem()
    self.updatefit()

  def getrandmem(self):
    """generate a random member using uniform dist"""
    
    feas = False
    mem = np.zeros(self.genes)
    while not feas:
      for g in xrange(0,self.genes):
        mem[g] = random.uniform(self.mins[g],self.maxs[g])
      feas = self.isfeasible(mem)
    return mem

  def isfeasible(self,mem):
    """check if a member is feasible"""
    
    return ((self.con_fun(mem)) and
      all(mem>self.mins) and
      all(mem<self.maxs))

  def updatefit(self,ind=None):
    """update fitness values"""
  
    if ind is None:
      ind = xrange(0,self.pop_size)
    for i in ind:
      self.fitness[i] = self.fit_fun(self.pop[i,:])

  def evolve(self,maxiter=1000,converge=True,tol=1e-6):
    """evolve the population until convergence or maxiter"""
    
    converged = False
    i = 0
    while ((not converged) or (not converge)) and (i<maxiter):
      i += 1
      dead = self.getkilled()
      self.breedpop(dead)
      self.updatefit(dead)
      if converge:
        converged = self.isconverged(tol)
    return i
  
  def getkilled(self):
    """return indices of randomly killed"""
    
    killnum = int(self.kill_rate*self.pop_size)
    return self.fitness.argsort()[-killnum:]
  
  def getunfit(self,pcnt):
    """return the indices of the most unfit"""
    
    unfit = int(self.pop_size*pcnt)
    return self.fitness.argsort()[-unfit:]
  
  def getfit(self,pcnt):
    """return the indices of the most fit"""
  
    fit = int(self.pop_size*pcnt)
    return self.fitness.argsort()[:-(fit+1)]
  



  def breedpop(self,dead):
    """breed new members replacing the given indices"""
  
    alive = np.setdiff1d(xrange(0,self.pop_size),dead)
    for d in dead:
      self.pop[d] = self.breedmem(alive)
  
  def breedmem(self,alive):
    """breed a new member from those that are alive"""
  
    parents = random.sample(alive,2)
    p1 = self.pop[parents[0]]
    p2 = self.pop[parents[1]]
    mu = (p1+p2)/2
    sigma = abs(p2-mu)
    mem = np.zeros(self.genes)
    feas = False
    while not feas:
      for g in xrange(0,self.genes):
        if random.uniform(0,1)<self.mut_rate:
          mem[g] = random.uniform(self.mins[g],self.maxs[g])
        else:
          mem[g] = random.gauss(mu[g],sigma[g])
      feas = self.isfeasible(mem)
    return mem
  
  def isconverged(self,tol):
    """check for convegence"""
  
    fit = self.pop[self.getfit(0.5)]
    sd = np.std(fit,axis=0)
    return all(sd<tol)
  
  def getmin(self):
    """return the best member as (variables,cost)"""
    
    minp = self.fitness.argsort()[0]
    return (self.pop[minp],self.fitness[minp])



Appendix A.2 – poptest.py

#!/usr/bin/env python

import math,time
import numpy as np
from population import Population

VALID = (['ackley','sphere','rosenbrock','beale','goldstein',
          'booth','bukin6','matyas','levi13','threehump',
          'easom','crosstray','eggholder','holdertable','mccormick',
          'schaffer2','schaffer4','styblinski','simionescu'])

FUNCTION = 'holdertable'

def main():
  """run the algorithm on the selected FUNCTION"""
  
  # get the parameters for the chosen FUNCTION
  (fitness,cons,mins,maxs,globmin) = getfunc(FUNCTION)
  
  # setup the Population
  p = Population(fitness,cons,mins,maxs,pop_size=1000)
  p.randpop()
  
  # keep track of iterations and time the algorithm
  iters = 0
  t1 = time.time()
  
  # run for up to 10000 generations, or until convergence
  # print current best every 10 generations
  for i in xrange(0,int(1e3)):
    add = p.evolve(maxiter=10,tol=1e-12)
    iters += add
    m = p.getmin()
    x1 = m[0][0]
    x2 = m[0][1]
    y = m[1]
    print str(iters).zfill(5)+': ['+str(x1)+','+str(x2)+'] = '+str(y)
    if add<10:
      break
  
  # print final results
  print '\n'+str(iters)+' generations in '+str(time.time()-t1)+' secs'
  print '\nCalced: ['+str(round(x1,6))+','+str(round(x2,6))+'] = '+str(round(y,6))
  x1 = globmin[0][0]
  x2 = globmin[0][1]
  y = globmin[1]
  print 'Actual: ['+str(round(x1,6))+','+str(round(x2,6))+'] = '+str(round(y,6))

def getfunc(fun):
  """return the cost function, constraint function, mins, maxs, and
  globalmin information for the given string fun or raise an error
  if the given string is invalid"""
  
  if fun=='ackley':
    fun = ackley
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([0,0]),0)
  elif fun=='sphere':
    fun = sphere
    cons = nocons
    mins = np.array([-1000000,-1000000])



    maxs = np.array([1000000,1000000])
    globmin = (np.array([0,0]),0)
  elif fun=='rosenbrock':
    fun = rosenbrock
    cons = nocons
    mins = np.array([-1000000,-1000000])
    maxs = np.array([1000000,1000000])
    globmin = (np.array([1,1]),0)
  elif fun=='beale':
    fun = beale
    cons = nocons
    mins = np.array([-4.5,-4.5])
    maxs = np.array([4.5,4.5])
    globmin = (np.array([3,0.5]),0)
  elif fun=='goldstein':
    fun = goldstein
    cons = nocons
    mins = np.array([-2,-2])
    maxs = np.array([2,2])
    globmin = (np.array([0,-1]),3)
  elif fun=='booth':
    fun = booth
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([1,3]),0)
  elif fun=='bukin6':
    fun = bukin6
    cons = nocons
    mins = np.array([-15,-3])
    maxs = np.array([-5,3])
    globmin = (np.array([-10,1]),0)
  elif fun=='matyas':
    fun = matyas
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([0,0]),0)
  elif fun=='levi13':
    fun = levi13
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([1,1]),0)
  elif fun=='threehump':
    fun = threehump
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([0,0]),0)
  elif fun=='easom':
    fun = easom
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([math.pi,math.pi]),-1)
  elif fun=='crosstray':
    fun = crosstray
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([1.34941,1.34941]),-2.06261)
  elif fun=='eggholder':
    fun = eggholder
    cons = nocons



    mins = np.array([-512,-512])
    maxs = np.array([512,512])
    globmin = (np.array([512,404.2319]),-959.6407)
  elif fun=='holdertable':
    fun = holdertable
    cons = nocons
    mins = np.array([-10,-10])
    maxs = np.array([10,10])
    globmin = (np.array([8.05502,9.66459]),-19.2085)
  elif fun=='mccormick':
    fun = mccormick
    cons = nocons
    mins = np.array([-1.5,-3])
    maxs = np.array([4,4])
    globmin = (np.array([-0.54719,-1.54719]),-1.9133)
  elif fun=='schaffer2':
    fun = schaffer2
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([0,0]),0)
  elif fun=='schaffer4':
    fun = schaffer4
    cons = nocons
    mins = np.array([-100,-100])
    maxs = np.array([100,100])
    globmin = (np.array([0,1.25313]),0.292579)
  elif fun=='styblinski':
    fun = styblinski
    cons = nocons
    mins = np.array([-5,-5])
    maxs = np.array([5,5])
    globmin = (np.array([-2.903534,-2.903534]),-78.33198)
  elif fun=='simionescu':
    fun = simionescu
    cons = simioinescucons
    mins = np.array([-1.25,-1.25])
    maxs = np.array([1.25,1.25])
    globmin = (np.array([0.84852813,-0.84852813]),-0.072)
  else:
    raise ValueError('Function "'+str(fun)+'" is not a valid function')
  return (fun,cons,mins,maxs,globmin)

def ackley(genes):
  """cost function for the ackley function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-20*math.exp(-0.2*pow(0.5*(x1**2+x2**2),0.5))-
    math.exp(0.5*(math.cos(2*math.pi*x1)+math.cos(2*math.pi*x2)))+
    math.e+20)

def sphere(genes):
  """cost function for the sphere function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return x1**2+x2**2

def rosenbrock(genes):
  """cost function for the rosenbrock function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (100*pow(x2-x1**2,2)+pow(x1-1,2))



def beale(genes):
  """cost function for the beale function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (pow(1.5-x1+x1*x2,2)+
    pow(2.25-x1+x1*pow(x2,2),2)+
    pow(2.625-x1+x1*pow(x2,3),2))

def goldstein(genes):
  """cost function for the goldstein function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return ((1+pow(x1+x2+1,2)*(19-14*x1+3*x1**2-14*x2+6*x1*x2+3*x2**2))*
    (30+pow(2*x1-3*x2,2)*(18-32*x1+12*x1**2+48*x2-36*x1*x2+27*x2**2)))

def booth(genes):
  """cost function for the booth function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (pow(x1+2*x2-7,2)+pow(2*x1+x2-5,2))

def bukin6(genes):
  """cost function for the bukin6 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (100*pow(abs(x2-0.01*x1**2),0.5)+0.01*abs(x1+10))

def matyas(genes):
  """cost function for the matyas function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.26*(x1**2+x2**2)-0.48*x1*x2)

def levi13(genes):
  """cost function for the levi13 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (math.sin(3*math.pi*x1)**2+((x1-1)**2)*
    (1+math.sin(3*math.pi*x2)**2)+((x2-1)**2)*
    (1+math.sin(2*math.pi*x2)**2))

def threehump(genes):
  """cost function for the threehump function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (2*x1**2-1.05*x1**4+(x1**6)/6+x1*x2+x2**2)

def easom(genes):
  """cost function for the easom function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-math.cos(x1)*math.cos(x2)*
    math.exp(-((x1-math.pi)**2+(x2-math.pi)**2)))



def crosstray(genes):
  """cost function for the crosstray function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-0.0001*(abs(math.sin(x1)*math.sin(x2)*
    math.exp(abs(100-math.sqrt(x1**2+x2**2)/math.pi)))+1)**0.1)

def eggholder(genes):
  """cost function for the eggholder function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-(x2+47)*math.sin(math.sqrt(abs(x2+x1/2+47)))-
    x1*math.sin(math.sqrt(abs(x1-(x2+47)))))

def holdertable(genes):
  """cost function for the holdertable function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (-abs(math.sin(x1)*math.cos(x2)*
    math.exp(abs(1-math.sqrt(x1**2+x2**2)/math.pi))))

def mccormick(genes):
  """cost function for the mccormick function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (math.sin(x1+x2)+(x1-x2)**2-1.5*x1+2.5*x2+1)

def schaffer2(genes):
  """cost function for the schaffer2 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.5+((math.sin(x1**2-x2**2)**2-0.5)/
    (1+0.001*(x1**2+x2**2))**2))

def schaffer4(genes):
  """cost function for the schaffer4 function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.5+((math.cos(math.sin(abs(x1**2-x2**2)))-0.5)/
    (1+0.001*(x1**2+x2**2))**2))

def styblinski(genes):
  """cost function for the styblinski function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (((x1**4-16*x1**2+5*x1)+(x2**4-16*x2**2+5*x2))/2)

def simionescu(genes):
  """cost function for the simionescu function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return (0.1*x1*x2)



def simioinescucons(genes):
  """constraint function for the simionescu function"""
  
  x1 = genes[0]
  x2 = genes[1]
  return x1**2+x2**2<=(1+0.2*math.cos(2*math.atan(x1/x2)))**2

def nocons(genes):
  """constraint function for functions with only mins and maxs"""
  
  return True

if __name__ == '__main__':
  main()



Appendix B – Test Functions

Function Formula Minimum

Ackley

f (x , y) = −20 exp (−0.2√ 0.5(x2
+ y 2

))

−exp (0.5(cos(2 πx)+cos(2π y)))+e+20

f (0,0) = 0

−5 ≤ (x , y) ≤ 5

Sphere

f (x , y) = x2
+ y2

f (0,0) = 0

−∞ ≤ (x , y) ≤ ∞

Rosenbrock

f (x , y) = 100(y−x2
)
2
+(x−1)2

f (1,1) = 0

−∞ ≤ (x , y) ≤ ∞

Beale

f (x , y ) = (1.5−x+xy)2+(2.25−x+ xy2
)
2

+(2.625−x+xy3
)
2

f (3,0.5) = 0

−4.5≤ (x , y) ≤ 4.5

Goldstein-Price

f (x , y ) = (1+(x+ y+1)2(19−14 x+3 x2
−14 y+6 xy+3 y2

))

(30+(2 x−3 y)2
(18−32 x+12 x2

+48 y−36 xy+27 y2
))

f (0,−1) = 3

−2 ≤ (x , y) ≤ 2



Booth

f (x , y ) = (x+2 y+7)2+(2 x+ y−5)2
f (1,3) = 0

−10 ≤ (x , y) ≤ 10

Bukin N.6

f (x , y ) = 100√ | y−0.01x2|+0.01|x+10|

f (−10,1) = 0

−15 ≤ x ≤−5
−3 ≤ y ≤ 3

Matyas

f (x , y ) = 0.26 (x2
+ y2

)−0.48xy
f (0,0) = 0

−10 ≤ (x , y) ≤ 10

Lévi N.13

f (x , y ) = sin2
(3 πx)+(x−1)2(1+sin2

(3 π y))
+( y−1)2(1+sin2

(2π y))

f (1,1) = 0

−10 ≤ (x , y) ≤ 10

Three-hump camel

f (x , y ) = 2 x2−1.05x4+
x6

6
+xy+ y2

f (0,0) = 0

−5 ≤ (x , y ) ≤ 5



Easom

f (x , y ) = −cos(x)cos( y)exp(−((x−π)
2
+( y−π)

2
))

f (π ,π) = −1

−100 ≤ (x , y) ≤ 100

Cross-in-tray

f (x , y ) =

−0.0001(| sin (x)sin ( y)exp(|100−√ x2
+ y2

π | )|+1)
0.1

f (1.349,−1.349)

f (1.349,1.349)
f (−1.349,1.349)

f (−1.349,−1.349)
= −2.06261

−10 ≤ (x , y) ≤ 10

Eggholder

f (x , y ) = −( y+47)sin (√ | y+
x
2
+47 | )

−x sin (√| x−( y+47)| )

f (512,404.23)

= −959.6407

−512 ≤ (x , y) ≤ 512

Hölder table

f (x , y ) = −| sin(x)cos( y)exp(|1− √x2
+ y2

π | )|

f (8.055,−9.665)

f (8.055,9 .665)
f (−8.055,9.665)

f (−8.055,−9.665)
= −19.2085

−10 ≤ (x , y) ≤ 10

McCormick

f (x , y ) = sin (x+ y)+(x−y )
2
−1.5 x+2.5 y+1

f (−0.547,−1.547)

= −1.9133

−1.5 ≤ x ≤ 4
−3 ≤ y ≤ 4



Schaffer N.2

f (x , y ) = 0.5+
sin2

(x2
−y2

)−0.5

(1+0.001(x2+ y2))2

f (0,0) = 0

−100 ≤ (x , y) ≤ 100

Schaffer N.4

f (x , y ) = 0.5+
cos(sin (|x2

−y2| ))−0.5

(1+0.001(x2+ y2))2

f (0,1.25313)

= 0.292579

−100 ≤ (x , y) ≤ 100

Styblinski-Tang

f (x , y ) = 0.5((x4
−16x2

+5 x)+(y4
−16 y2

+5 y))

f (−2.904,−2.904)

= −78.33198

−5 ≤ (x , y ) ≤ 5

Simionescu

f (x , y ) = 0.1 xy

subject to: x2
+ y2

≤ ( 1+0.2cos ( 8arctan
x
y ) )

2

f (0.849,−0.849)

f (−0.849,0 .849)
= −0.072

−1.25 ≤ (x , y) ≤ 1.25
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