
Real-Valued Genetic Optimization
Intro to Engineering Optimization Final Project

Joshua Andrew Haas
Electrical and Computer Engineering

Rowan University
Glassboro, NJ, USA

haasj74@students.rowan.edu

Abstract—Recently, numerous so-called “meta-heuristic”
algorithms have been proposed to solve optimization problems.
Most of these find inspiration from nature rather than using a
mathematically devised process. One example is the idea of a
genetic algorithm, also known as evolutionary optimization, that
attempts to solve optimization problems by modeling the
processes driving evolution, namely mutation and natural
selection. These meta-heuristic algorithms, including genetic
algorithms, hope to find the global optimum (given enough
iterations), rather than the much-dreaded local optimum.
However, the classic genetic algorithm is comprised entirely of
binary variables, and is thus intrinsically discrete or categorical
in nature. It has been used, for example, to solve the traveling
salesman problem. It is possible to extend genetic optimization
algorithms to the continuous case, where they are called “real-
valued” genetic algorithms. In this case each variable is
continuous and can take on an infinite number of different
values. After a brief literature review in the field of genetic
algorithms, this paper examines the creation of a real-valued
genetic algorithm in the Python programming language and its
performance on numerous stock optimization functions.

Keywords—optimization, genetic algorithm, meta-heuristic,
global minimum, python, convergence

I. INTRODUCTION

At its simplest, optimization is applying a technique or
algorithm to find the minimum or maximum of some cost
function. For a very easy example, such an algorithm would
locate the point (0,0) with a value of 0 as the minimum of the
function f(x) = x2. One of the easiest algorithms to understand
is the Steepest Descent algorithm, which works by calculating
the derivative of the cost function. First, a random starting
point is chosen somewhere in the function's valid input space,
for example at x = 1. Then, the gradient (multi-dimensional
derivative) of the function at that point is calculated. In our 1D
example, the gradient is the derivative, and at x = 1 the
derivative is f '(x) = 2x = 2(1) = 2. The algorithm then moves
in the opposite direction of the gradient. In our example, since
the gradient is positive, the algorithm moves in the negative x
direction, thus getting closer to the minimum at x = 0. The
process of taking the derivative and moving the current point is
repeated until some stopping condition is met, for example
when the decrease in the cost function from one iteration to the
next is less than a threshold value. The update rule for the
Steepest Descent algorithm is shown below as Eq. 1, where
xk+1 is the next value, xk is the previous value, αk is a

variable step size, ∇ is the gradient, and f (xk) is the cost
function evaluated at xk [1].

x(k+1) = xk− αk ∇ f (xk) Eq. 1

However, one of the major shortcomings of this algorithm
(and other gradient-based algorithms) is its tendency to
converge to local minima. For example, the function presented
below as Eq. 2 and shown in Fig. 1 has a global minimum at
x = 0, but it also has local minima at x = ±2π. If the Steepest
Descent algorithm began at, say, x = 5 it would very likely
converge to the local minimum at x = 2π since the gradient at
x = 5 is negative.

f (x) = | x |− 2cos(x) Eq. 2

 Figure 1. Graph of Eq. 2 showing local minima.

A related problem to that of local minima is functions with
large search spaces. For example, in the Traveling Salesman
Problem, a salesman wants to visit a number of cities while
traveling the shortest distance possible and visiting each city

only once. The locations of each city are known, and result in
different distances between each pair of cities. The only way
to find the true global minimum is to evaluate every possible
permutation. However, this becomes computationally
infeasible very quickly, since the number of permutations
increases factorially. For example, for 20 cities there are 121.6
quadrillion permutations. This large of a search space likely
contains countless local minima that traditional optimization
techniques would get stuck in.

One solution to the problem of local minima and large
search spaces are stochastic approaches. In these methods
some degree of randomness is introduced in the hopes of
randomly hitting the global minimum (or at least getting close
to it). Many of these stochastic approaches are based on
phenomena observed in nature, giving rise to so-called
biological algorithms. One such algorithm is the genetic
algorithm, which is based on the theory of evolution. It should
be noted that few if any of these algorithms have any
mathematical backing or proof. Usually they “just work.”

Evolution consists of two key concepts, natural selection
and mutation. Natural selection is the process by which more
“fit” individuals in a population are more likely to spread their
genes via reproduction. For example, a cat with a better sense
of smell than other cats could be more likely to find food.
Therefore, this cat is more likely to survive long enough to
reproduce, and its children will likely inherit its improved
sense of smell. Since these children are also more likely to
survive than their peers, they are also more likely to reproduce,
and after enough generations the majority of the population
will have this better sense of smell.

The process of genetic recombination inherent in
reproduction of most organisms is also a key factor in natural
selection. Every trait is determined by a gene encoded in an
organism's DNA. When two organisms reproduce, each of the
child's genes is randomly selected from either the mother or
father. This results in novel combinations of genes in each
generation and increases the population's diversity.

Entirely new, never seen before, genes can be introduced to
a population via mutation. Sometimes during the process of
reproduction, instead of receiving the mother or father's version
of a particular genes, the child instead receives a mutant
version. This mutation is completely random and is
completely unrelated to the genes of the mother or father. In
this way, new genes are introduced to the population. A
beneficial mutation will eventually spread to the entire
population via natural selection, while a detrimental mutation
will eventually die out by the same process.

The Simple Genetic Algorithm (SGA) is shown below as
Algorithm 1. It models every individual as an array of binary
numbers, where one or more of the numbers code a specific
gene [2].

Algorithm 1. Simple Genetic Algorithm.

1. Generate a random population of individuals.

2. Evaluate the fitness of every individual.

3. Breed (crossover and mutate) the most fit individuals
from the current population to produce offspring.

4. Replace the current population with their offspring.

5. Repeat steps 2-4 until some stopping criteria.

In step 1, every individual is initialized as a random
sequence of 1s and 0s. In step 2, the fitness function generates
some fitness value given an individual's binary representation.
Oftentimes the binary representation must first be decoded into
a more meaningful set of numbers before the fitness function
can be applied. In step 3, two individuals are randomly
selected from the most fit individuals in the population (for
example, from the top 50%). These two individuals (referred
to as the mother and father) are then bred to create a new
individual (referred to as the child). First, the genes from the
mother and father undergo crossover (although there are many
different crossover schemes, we will only mention one here).
A point is randomly chosen on the binary genetic array. Every
gene to the left of the point is taken from the mother, and every
gene to the right of the point is taken from the father. It should
be noted that if the mother and father have the same value for a
specific gene, then the child is guaranteed to have that value
(barring mutation). Every gene is also subject to the possibility
of a random mutation (simply flipping the bit) based on some
mutation rate. In step 4, the current population is completely
forgotten and replaced by the children bred in step 3. Steps 2-4
are then repeated until some stopping criteria is met. Each full
iteration of the algorithm is referred to as a generation [2].

Continuous problems (such as finding the minimum of a
continuous function like Eq. 2) can be modeled using the SGA.
However, this requires modeling each variable as a series of
binary numbers, resulting in quantization error. It also reduces
the speed of the algorithm since the binary genes must first be
converted into a decimal representation before the cost
function can be computed [3].

Inherently continuous genetic algorithms, known as Real-
Valued Genetic Algorithms, have been proposed to overcome
this shortcoming of the SGA. In such algorithms, each gene
(variable) is a continuous decimal value. This requires
modified crossover and mutation methods, but otherwise
functions the same as the SGA. These differences will be
explored further in the Methods section [3].

II. LITERATURE REVIEW

A. Overview of Stopping Criteria

The stopping criteria of a genetic algorithm (actually any
meta-heuristic algorithm) has traditionally been uncertain and
variable. Perhaps the most common stopping criterion is to
simply terminate after a preset number of generations.
However, this is inaccurate at best and cannot guarantee
convergence to a global minimum without knowing the shape
of the fitness function. Another form of stopping criteria is the
so-called genotypical stopping criterion, which stops the
algorithm when the variance in the genes of the population has
fallen below some threshold. Finally, there exist the so-called
phenotypical stopping criterion, which stop the algorithm when
the progress (i.e. reduction in the fitness function) is less than
some threshold for some number of generations [4].

Markov Chains are a technique used to model the state
space of a random process that depends only on the current
state (i.e. memoryless). The transition from one state to every
other possible state is assigned a probability. This modeling
technique is perfect for evolutionary algorithms since the next
generation only depends on the parents in the current
generation. Using Markov Chains to model genetic
algorithms, it can be shown that any population can be reached
from any other population as long as the mutation rate is
nonzero. This means that, as the number of generations
increases, the probability of reaching a specific population, and
thus the probability of visiting a specific individual, increase.
Moreover, this guarantees that, given enough generations, the
genetic algorithm will eventually find the global minimum.
While this guarantees eventual convergence, without further
analysis, said convergence could potentially take longer than
an exhaustive search [4].

B. Elitist Genetic Algorithms

The Elitist Genetic Algorithm (EGA) introduces a slight
modification to the SGA. In this version, the children must
compete with their parents in order to be part of the new
population. In other words, the current generation is not
simply forgotten and replaced by its children. Instead, the
children only replace parents if the children are more fit than
the parents. This guarantees that the algorithm never
backtracks to a worse fitness value, since it will always
remember its current best individual. In addition, good
solutions are never lost during the search process as may be the
case with the SGA. The elitist approach is also less sensitive to
undersized populations, and lends itself well to hybridization
with gradient-descent methods [5].

In the elitist version, using Markov Chains, an upper bound
for the number of generations required to guarantee that all
individuals have been visited can be computed. This bound is
presented below as Eq. 3, where t is the number generations,
α is the probability of having visited every individual, n is
the population size, μ is the mutation rate, and l is the
length of the chain representing an individual [4].

t ≥ ⌈ ln (1−α)

n ln(1−min {μ
l ,(1−μ)

l
}) ⌉ Eq. 3

Unfortunately the above equation only applies in the case
of the classic (i.e. discrete or binary) SGA. For continuous
elitist genetic algorithms, Bhandari et al. used the variance of
individuals to define a stopping criterion. The algorithm must
first remember the most fit individual for the past n
generations. Then the variance of these fitness values is
calculated and compared to a threshold. If it is below the
threshold then the algorithm stops. However, the authors note
that the parameter n still depends on the shape of the fitness
function. The calculated variance is shown below in Fig. 2, to
proves that for most problems it does asymptotically approach
zero, lending itself well to a convergence criterion [6].

 Figure 2. Variance of past best versus generation.

C. Adaptive Crossover and Mutation Rates

The population size, crossover rate, and mutation rate are
the three most important parameters in most genetic
algorithms. However, choosing optimum or even “good
enough” values is highly problem dependent and not well
understood at this time. Therefore, Lin at al. sought to develop
methods for adaptive crossover and mutation rates. In
addition, they suggest starting the algorithm with a very high
mutation rate of 0.5 to help promote searching.

During the breeding step in each generation, the fitness
values of every pair of parents and their respective offspring
are compared. If on average the parents have a higher fitness
value, then crossover has resulted in a decrease in fitness and
the crossover rate is lowered. If on average the children have a
higher fitness value, then crossover has resulted in an increase
in fitness and the crossover rate is increased. This is also
preformed to compare the children before and after the
mutation step. If pre-mutation children have, on average,
higher fitness values, then mutation has decreased the fitness of
the population and the mutation rate is decreased. If post-
mutation children have, on average, higher fitness values, then
mutation has increased the fitness of the population and the
mutation rate is increased. Both the crossover and mutation
rate are capped at minimum and maximum values so both are
always higher than zero and lower than one. This scheme
outperformed existing crossover and mutation selection
techniques on several optimization problems [2].

D. Differential Crossover

Although genetic algorithms were inspired by the process
of evolution, nothing requires that their design be restricted to
the exact parameters of real-life human evolution. One such
proposal seeks to inhibit premature convergence (i.e. local
minimum) using so-called Differential Evolution (DE)
crossover in continuous genetic algorithms. First, only a subset
of the population is selected for breeding and potential
replacement. For each selected individual, its replacement is
calculated by the formula shown below as Eq. 4, where
chij(t+1) is the “child,” chij(t) is the “parent,” F1 and F2

are random numbers in the range (0,1) , chpj(t) and chqj(t)
are randomly selected individuals from the current population,
and chbestj(t) is the individual in the current population with
the best fitness value [3].

chij(t+1) = chij(t) + F1(chpj(t)− chqj(t))
+ F2(chbestj (t) − chij(t))

 Eq. 4

Each individual is only replaced if its replacement has a
higher fitness value than itself, making this scheme elitist.
Moreover, this technique does not have a crossover probability
or mutation probability as in most other genetic algorithms.
This DE crossover seeks to lessen premature convergence and
thus force the algorithm to find a global minimum rather than a
local minimum. The same authors then combine the DE
process with traditional crossover and mutation to come up
with their Simplified DE (SDE) technique. The update
equation is shown below as Eq. 5, using the same symbols as
Eq. 4 except for CR is the crossover rate and chrj(t) is a
third random individual from the current population.

chij(t+1) = chpj(t) + CR (chqj(t) − ch rj(t)) Eq. 5

The results from the DE and SDE crossover schemes
significantly outperformed SGA and EGA on many functions
in the authors' tests. The SDE scheme is pictured in Fig. 3
below to emphasize that individuals are updated based on the
mutual distance between population members.

 Figure 3. Geometric interpretation of SDE scheme.

E. Radioactive Zones

Another proposal to decrease the likelihood of local
convergence is the introduction of so-called Radioactive Zones.
Whenever the algorithm begins to stagnate, (i.e. population
genes are barely changing), the algorithm creates a Radioactive
Zone where the probability of mutation is 100%. The area of
stagnation corresponds to a local minimum, so whenever an
individual is created inside the radioactive zone it will
immediately leave it via mutation. In addition, every time an
individual is mutated by a radioactive zone, the mutation level
in that zone is decreased. If the population stagnates for more

generations than a threshold value, the algorithm stops. When
adding this to the SDE crossover scheme described in the
previous section, Hrtska et al. found that the resulting
algorithm converged for all test functions, albeit often slower
than competing algorithms [3].

F. Real-World Applications

1) Image Processing
Mashohor et al. used en EGA in their project for printed

circuit board inspection. The goal of the project was to decide
whether a series of circuit boards were acceptable or note by
comparing a photograph of each board to a reference image.
However, as boards are sent down the conveyor belt, they are
almost always displaced or rotated relative to the center and
orientation of the camera. Therefore, a simple pixel by pixel
comparison with the reference image is impossible.

The authors thus implemented an EGA in order to estimate
the displacement and rotation of the test board. According to
previous work, genetic algorithms have produced fast and
accurate matching while providing scaling and rotation
consistency. The fitness function in this case was the similarity
of the test and reference images pixel by pixel. Each
individual was a 19-bit binary string, with 9 bits to represent
rotation, 5 bits to represent x-axis displacement, and 5 bits to
represent y-axis displacement. They created 200 generations
with a population size of 18, crossover probability of 0.5, and
mutation probability of 0.01. The displacements estimated by
the GA were accurate to within a few pixels out of 1600 pixels,
although the rotations estimated were significantly less
accurate [7].

2) Power Distribution
Another potential application of genetic algorithms is

power distribution optimization. For example, Tomoiaga et al.
developed a modified genetic algorithm to find the distribution
system with minimum active power loss. The genes in this
application were binary, with each genes representing a
specific link between two points on the graph of power
distribution relays. The branch list of a sample graph is shown
below in Fig. 4a [8].

 Figure 4a. Branch list of the graph.

The graph resulting from coding a sample population
member is shown below in Fig. 4b. Applying the algorithm to
several test problems, the authors found a reduction in power
loss of up to 50% depending on the problem. This was
achieved with only 10 population members and under a dozen
generations using the C++ programming language. This
algorithm performed significantly better in terms of both
computation time and final result than traditional power
distribution optimization algorithms.

 Figure 4b. Branch lists from decoding a.

3) Neural Network Training
Another very popular field in engineering and mathematics

today is Pattern Recognition and Machine Learning. In a
pattern recognition problem, the goal is to predict the classes of
a set of observations, given their features, after training on a set
of labeled data. For example, the classes could be male and
female, and the features height and hair length. First, in
training, the classifier (i.e. algorithm) is presented with a set of
observations that note the height and hair length of random
men and women. It uses these data to form some internal
model. Next, in prediction, it is given a height and hair length,
and outputs a prediction as to which class it “believes” that
observation belongs, either male or female.

One popular classifier is the Neural Network, which
consists of “neurons” that activate depending on the features.
In order to train a neural network, however, requires
optimizing the weights in each neuron based on the training
data. Although this is traditionally done using a gradient
descent algorithm, Ojha et al. instead used a genetic algorithm.

The authors sought to identify the presence of dangerous
gases in Manholes in order to keep maintenance personnel
safe. These gases can include Hydrogen Sulfide (H2S),
Ammonia (NH3), and Methane (CH4), all of which are
extremely dangerous at significant concentrations. The easiest
solution is to use an individual sensor for each dangerous gas
type; however, most of these sensors also react to the presence
of other gases. This gives an array of sensors significant cross-
sensitivity that results in inaccurate results. Therefore, the
authors seek to use a neural network classifier to improve
prediction. Specifically, they used a real-valued genetic
algorithm to optimize the weights for a two layer feed-forward
neural network in the Java programming language. The
performance met the minimum requirements, but was not
compared to a neural network trained via gradient descent [9].

III. METHODS

Since most meta-heuristic algorithms are intuitive rather
than mathematically rigorous, I decided to implement a real-
valued genetic algorithm on my own, and then compare my
results with the recommendations in literature. I chose the
Python programming language because I am very familiar with
it and it is conducive to fast scripting of a wide variety of
applications.

Two main files were created, namely “population.py” and
“poptest.py”. The “population.py” file contains a single class,
namely “Population” that can be used to setup and execute a
genetic algorithm optimization problem. During initialization,
the user must specify a fitness function, constraint function,
array of variables minima, and array of variable maxima.

Optional parameters include providing a starting population,
changing the population size, setting the kill rate, and setting
the mutation rate. The algorithm is run by calling the “evolve”
method on the created Population. The user can specify
whether to check for convergence, the maximum number of
iterations, and the tolerance for convergence. Note that the
“scipy” package is required to run the algorithm [11]. These
files can be found in Appendix A.

The algorithm implemented in “population.py” is shown
below as Algorithm 2:

Algorithm 2

1. Generate a random population of individuals.

2. Evaluate the fitness of every individual.

3. Kill (remove) the least fit individuals based on the
“kill_rate” parameter.

4. Breed (crossover and mutate) the remaining
individuals from the current population to produce
offspring to replace those killed.

5. Repeat steps 2-4 until standard deviation is less than
some threshold.

The algorithm differs from other methods presented in the
beginning of the paper in a few ways. First, the
implementation of elitism is slightly different than in other
papers. In most of the literature, elitism is implemented per
family. In other words, during breeding, a mother and father
produce two offspring. The two most fit individuals from this
“family” of four are then chosen to enter the next population.
In this implementation, the least fit half of the population is
discarded. Then the remaining individuals are bred to
repopulate and reach the desired population size.

In addition, the crossover method is different than that
proposed in other literature. Given two individuals, suggested
methods include taking the mean of their genes, taking a
random point linearly between the two individuals, and taking
a random point linearly that could lie outside the two
individuals. This implementation instead generates a random
child using a Gaussian distribution with mean equal to the
mean of the parents' genes, and standard deviation equal to the
distance between the parents and the mean. By the Gaussian
rule of thumb, this implies that about 68% of children will fall
near the mean and between the two parents, while 32% of
children will fall outside of the two parents. This promotes
convergence while still allowing the population to search
nearby locations.

Finally, this implementation uses a modified convergence
criteria referred to in [6] as Population Variance. If the
standard deviation of the most fit half of the population is less
than the “tol” parameter, the algorithm stops. Therefore, as
long as the mutation rate is less than 0.5, and the mutation rate
is less than the kill rate, the algorithm should converge
(intuitively, not mathematically) given enough generations.

The algorithm was tested on various functions five times
each and the results recorded. Each test was performed using a
population of size 1000, 10000 max iterations, a kill rate of 0.5,

a mutation rate of 0.5, and a tolerance of 10-12. These tests
were carried out using “poptest.py” by changing the value of
the global variable “FUNCTION” to any of the values in the
array “VALID”. The “poptest.py” script prints the current best
individual every 10 generations, and terminates after 10000
generations. At the end, it prints the time elapsed over the
simulation, the best individual in the population, and the true
global minimum.

IV. RESULTS

The results of the simulations are shown above in Table 1.
Each function was simulated five times. Only 8/19 of the
functions met the convergence criteria and terminated before
reaching the full 10000 generations. On the other hand, the
algorithm found the global minimum every time for 16/19 of
the functions. The “schaffer4” function was the only function
for which the algorithm never found the global optimum.
Images and definitions of the functions can be found in
Appendix B.

V. DISCUSSION AND CONCLUSIONS

The convergence criteria used in the algorithm did not work
well in practice, since 11/19 of the functions did not converge.
Moreover, 10/11 of the functions that did not converge did find
the global minimum. In fact, for those 10 functions, in most
cases the algorithm found the global minimum (or at least a
point very close to the global minimum) in only a few hundred
generations. The rest of the algorithm was likely attempting to
descend a hill, which is notoriously difficult for genetic

algorithms. The performance would likely improve
significantly by increasing the “tol” parameter, finding an
estimate of the global minimum, and then using a gradient-
descent method to gain precision.

Overall I think these results are pretty cool, since none of
the parameters of the algorithm were changed from function to
function. This implies that (at least in low dimensional
problems) genetic algorithms are somewhat independent of
their parameters. Furthermore, for those functions that
converged, the number of iterations was fairly constant. This
likely indicates that genetic algorithms are at least somewhat
independent of the random initial population.

As mentioned in [3], it is obvious that genetic algorithms
are not immune to getting stuck in local minima. Although it
certainly did better than a gradient-descent method would have,
it still got stuck in a local minimum at least once for 3/19
functions. It failed to find the global minimum even once for
the “schaffer4” function.

Although, these conclusions should be taken with a grain of
salt, since 5 simulations per function is nowhere near enough to
characterize performance with any statistical certainty.

ACKNOWLEDGMENTS

I would like to thank Dr. Bouaynaya for teaching Intro to
Optimization, as I think it is a topic every engineer should
learn about and explore.

I would like to acknowledge Dr. Xin Yao for kindling my
interest in evolutionary computation at the IEEE

Table 1. Results of genetic algorithm for various test functions (5 simulations each).

Function Converged Global Min Gen. Mean Gen. Max Gen. Min Err. Mean Err. Max Err.

ackley 5 / 5 5 / 5 91 92.4 94 0 0 0

sphere 5 / 5 5 / 5 132 132.8 134 0 0 0

rosenbrock 0 / 5 4 / 5 10000 10000 10000 0 5.28 26.4

beale 5 / 5 5 / 5 152 175 249 0 0 0

goldstein 0 / 5 5 / 5 10000 10000 10000 0 0 0

booth 5 / 5 5 / 5 108 110.2 112 0 0 0

bukin6 5 / 5 1 / 5 444 480.4 512 0.0018 0.0078 0.0138

matyas 5 / 5 5 / 5 129 135.2 144 0 0 0

levi13 5 / 5 5 / 5 98 99 101 0 0 0

threehump 5 / 5 5 / 5 94 95.6 97 0 0 0

easom 0 / 5 5 / 5 10000 10000 10000 0 0 0

crosstray 0 / 5 5 / 5 10000 10000 10000 0 0 0

eggholder 0 / 5 5 / 5 10000 10000 10000 0 0 0

holdertable 0 / 5 5 / 5 10000 10000 10000 0 0 0

mccormick 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer2 0 / 5 5 / 5 10000 10000 10000 0 0 0

schaffer4 0 / 5 0 / 5 10000 10000 10000 0.208 0.208 0.208

styblinski 0 / 5 5 / 5 10000 10000 10000 0 0 0

simionescu 0 / 5 5 / 5 10000 10000 10000 0 0 0

Computational Intelligence Society Workshop at the University
of Rhode Island.

Finally, the pictures in Appendix B are courtesy of
Wikipedia under the Creative Commons License.

REFERENCES

[1] N. Bouaynaya. Class Lecture. Topic: “Lecture #8: Gradient Methods.”
Faculty of Electrical and Computer Engineering, Rowan University,
Glassboro, NJ, Oct. 9, 2014.

[2] W. Lin et al. “Adapting Crossover and Mutation Rates in Genetic
Algorithms.” Journal of Information Science and Engineering, vol. 19,
2003, pg. 889-903.

[3] O. Hrstka and A. Kucerova. “Improvements of real coded genetic
algorithms based on differential operators preventing permature
convergence.” Advances in Engineering Sofware, vol. 35, 2004, pg. 237-
246.

[4] M. Safe et al. “On Stopping Criteria for Genetic Algorithms.” Advances
in Artificial Intelligence, 2004.

[5] D. Thierens. “Selection Schemes, Elitist Recombination, and Selection
Intensity.” International Computer Games Association Journal, 1997,
pg. 152-159.

[6] D. Bhandari et al. “Variance as a Stopping Criterion for Genetic
Algorithms with Elitist Model.” Fundamenta Informaticae, vol. 120, pg.
145-164.

[7] S. Mashohor et al. “Elitist Selection Schemes for Genetic Algorithm
based Printed Circuit Board Inspection System.” IEEE Congress on
Evolutionary Computation, vol. 2, 2005, pg. 974-978.

[8] B. Tomoiaga et al. “Pareto Optimal Reconfiguration of Power
Distribution Systems Using a Genetic Algorithm Based on NSGA-II.”
Energies, vol.6, 2013, pg. 1439-1455.

[9] V. Ojha et al. “Application of Real Valued Neuro Genetic Algorithm in
Detection of Components Present in Manhole Gas Mixture.” Advances
in Intelligent and Soft Computing, vol. 166, 2012, pg. 333-340.

[10] R. Oldenhuis. “Test functions for global optimization algorithms.”
Mathworks File Exchange, 2014.

[11] E. Jones et al. “SciPy: Open Source Scientific Tools for Python.”
Online. 2001. http://www.scipy.org/

Appendix A.1 – population.py

#!/usr/bin/env python3

import time,random
import numpy as np

class Population:

 def __init__(self,fit,con,mins,maxs,
 pop=None,pop_size=1000,kill_rate=0.5,mut_rate=0.25):
 """Create a new population for genetic optimization"""

 # Set required args
 self.fit_fun = fit
 self.con_fun = con
 self.mins = mins
 self.maxs = maxs

 # Set optional args
 self.pop = pop
 self.pop_size = pop_size
 self.kill_rate = kill_rate
 self.mut_rate = mut_rate

 # Other setup
 self.genes = len(mins)

 if self.pop is None:
 self.pop = np.zeros((self.pop_size,self.genes))

 self.fitness = np.zeros(self.pop_size)

 self.checkparams()

 random.seed(time.time())

 def checkparams(self):
 """test all parameters for validity"""

 # Type assertions
 assert callable(self.fit_fun), 'Parameter fit must be function'
 assert callable(self.con_fun), 'Parameter con must be function'
 assert isinstance(self.mins,np.ndarray), 'Parameter mins must be numpy.ndarray'
 assert isinstance(self.maxs,np.ndarray), 'Parameter maxs must be numpy.ndarray'
 assert isinstance(self.pop,np.ndarray), 'Parameter pop must be numpy.ndarray'
 assert isinstance(self.pop_size,int), 'Parameter pop_size must be int'
 assert isinstance(self.kill_rate,(int,float)), 'Parameter kill_rate must be int or float'
 assert isinstance(self.mut_rate,(int,float)), 'Parameter mut_rate must be int or float'

 # Individual assertions
 assert len(self.mins.shape)==1, 'Parameter mins must be row vector'
 assert len(self.maxs.shape)==1, 'Parameter maxs must be row vector'
 assert len(self.pop)==self.pop_size, 'Parameter pop must be of length pop_size'
 assert self.pop_size>0, 'Parameter pop_size must be greater than 0'
 assert (self.kill_rate>=0) and (self.kill_rate<1), 'Parameter kill_rate must be in [0,1)'
 assert (self.mut_rate>=0) and (self.mut_rate<1), 'Parameter mut_rate must be in [0,1)'

 # Dependant assertions
 assert self.pop.shape[0]==self.pop_size, 'Parameter pop must have pop_size rows'
 assert self.pop.shape[1]==self.genes, 'Parameter pop must have genes cols'
 assert self.mins.shape==self.maxs.shape, 'Parameters mins and maxs must be same shape'
 assert all(self.maxs>self.mins), 'Parameter maxs must be greater than mins'

 def randpop(self):
 """generate a random population"""

 for r in xrange(0,self.pop_size):
 self.pop[r,:] = self.getrandmem()
 self.updatefit()

 def getrandmem(self):
 """generate a random member using uniform dist"""

 feas = False
 mem = np.zeros(self.genes)
 while not feas:
 for g in xrange(0,self.genes):
 mem[g] = random.uniform(self.mins[g],self.maxs[g])
 feas = self.isfeasible(mem)
 return mem

 def isfeasible(self,mem):
 """check if a member is feasible"""

 return ((self.con_fun(mem)) and
 all(mem>self.mins) and
 all(mem<self.maxs))

 def updatefit(self,ind=None):
 """update fitness values"""

 if ind is None:
 ind = xrange(0,self.pop_size)
 for i in ind:
 self.fitness[i] = self.fit_fun(self.pop[i,:])

 def evolve(self,maxiter=1000,converge=True,tol=1e-6):
 """evolve the population until convergence or maxiter"""

 converged = False
 i = 0
 while ((not converged) or (not converge)) and (i<maxiter):
 i += 1
 dead = self.getkilled()
 self.breedpop(dead)
 self.updatefit(dead)
 if converge:
 converged = self.isconverged(tol)
 return i

 def getkilled(self):
 """return indices of randomly killed"""

 killnum = int(self.kill_rate*self.pop_size)
 return self.fitness.argsort()[-killnum:]

 def getunfit(self,pcnt):
 """return the indices of the most unfit"""

 unfit = int(self.pop_size*pcnt)
 return self.fitness.argsort()[-unfit:]

 def getfit(self,pcnt):
 """return the indices of the most fit"""

 fit = int(self.pop_size*pcnt)
 return self.fitness.argsort()[:-(fit+1)]

 def breedpop(self,dead):
 """breed new members replacing the given indices"""

 alive = np.setdiff1d(xrange(0,self.pop_size),dead)
 for d in dead:
 self.pop[d] = self.breedmem(alive)

 def breedmem(self,alive):
 """breed a new member from those that are alive"""

 parents = random.sample(alive,2)
 p1 = self.pop[parents[0]]
 p2 = self.pop[parents[1]]
 mu = (p1+p2)/2
 sigma = abs(p2-mu)
 mem = np.zeros(self.genes)
 feas = False
 while not feas:
 for g in xrange(0,self.genes):
 if random.uniform(0,1)<self.mut_rate:
 mem[g] = random.uniform(self.mins[g],self.maxs[g])
 else:
 mem[g] = random.gauss(mu[g],sigma[g])
 feas = self.isfeasible(mem)
 return mem

 def isconverged(self,tol):
 """check for convegence"""

 fit = self.pop[self.getfit(0.5)]
 sd = np.std(fit,axis=0)
 return all(sd<tol)

 def getmin(self):
 """return the best member as (variables,cost)"""

 minp = self.fitness.argsort()[0]
 return (self.pop[minp],self.fitness[minp])

Appendix A.2 – poptest.py

#!/usr/bin/env python

import math,time
import numpy as np
from population import Population

VALID = (['ackley','sphere','rosenbrock','beale','goldstein',
 'booth','bukin6','matyas','levi13','threehump',
 'easom','crosstray','eggholder','holdertable','mccormick',
 'schaffer2','schaffer4','styblinski','simionescu'])

FUNCTION = 'holdertable'

def main():
 """run the algorithm on the selected FUNCTION"""

 # get the parameters for the chosen FUNCTION
 (fitness,cons,mins,maxs,globmin) = getfunc(FUNCTION)

 # setup the Population
 p = Population(fitness,cons,mins,maxs,pop_size=1000)
 p.randpop()

 # keep track of iterations and time the algorithm
 iters = 0
 t1 = time.time()

 # run for up to 10000 generations, or until convergence
 # print current best every 10 generations
 for i in xrange(0,int(1e3)):
 add = p.evolve(maxiter=10,tol=1e-12)
 iters += add
 m = p.getmin()
 x1 = m[0][0]
 x2 = m[0][1]
 y = m[1]
 print str(iters).zfill(5)+': ['+str(x1)+','+str(x2)+'] = '+str(y)
 if add<10:
 break

 # print final results
 print '\n'+str(iters)+' generations in '+str(time.time()-t1)+' secs'
 print '\nCalced: ['+str(round(x1,6))+','+str(round(x2,6))+'] = '+str(round(y,6))
 x1 = globmin[0][0]
 x2 = globmin[0][1]
 y = globmin[1]
 print 'Actual: ['+str(round(x1,6))+','+str(round(x2,6))+'] = '+str(round(y,6))

def getfunc(fun):
 """return the cost function, constraint function, mins, maxs, and
 globalmin information for the given string fun or raise an error
 if the given string is invalid"""

 if fun=='ackley':
 fun = ackley
 cons = nocons
 mins = np.array([-5,-5])
 maxs = np.array([5,5])
 globmin = (np.array([0,0]),0)
 elif fun=='sphere':
 fun = sphere
 cons = nocons
 mins = np.array([-1000000,-1000000])

 maxs = np.array([1000000,1000000])
 globmin = (np.array([0,0]),0)
 elif fun=='rosenbrock':
 fun = rosenbrock
 cons = nocons
 mins = np.array([-1000000,-1000000])
 maxs = np.array([1000000,1000000])
 globmin = (np.array([1,1]),0)
 elif fun=='beale':
 fun = beale
 cons = nocons
 mins = np.array([-4.5,-4.5])
 maxs = np.array([4.5,4.5])
 globmin = (np.array([3,0.5]),0)
 elif fun=='goldstein':
 fun = goldstein
 cons = nocons
 mins = np.array([-2,-2])
 maxs = np.array([2,2])
 globmin = (np.array([0,-1]),3)
 elif fun=='booth':
 fun = booth
 cons = nocons
 mins = np.array([-10,-10])
 maxs = np.array([10,10])
 globmin = (np.array([1,3]),0)
 elif fun=='bukin6':
 fun = bukin6
 cons = nocons
 mins = np.array([-15,-3])
 maxs = np.array([-5,3])
 globmin = (np.array([-10,1]),0)
 elif fun=='matyas':
 fun = matyas
 cons = nocons
 mins = np.array([-10,-10])
 maxs = np.array([10,10])
 globmin = (np.array([0,0]),0)
 elif fun=='levi13':
 fun = levi13
 cons = nocons
 mins = np.array([-10,-10])
 maxs = np.array([10,10])
 globmin = (np.array([1,1]),0)
 elif fun=='threehump':
 fun = threehump
 cons = nocons
 mins = np.array([-5,-5])
 maxs = np.array([5,5])
 globmin = (np.array([0,0]),0)
 elif fun=='easom':
 fun = easom
 cons = nocons
 mins = np.array([-100,-100])
 maxs = np.array([100,100])
 globmin = (np.array([math.pi,math.pi]),-1)
 elif fun=='crosstray':
 fun = crosstray
 cons = nocons
 mins = np.array([-10,-10])
 maxs = np.array([10,10])
 globmin = (np.array([1.34941,1.34941]),-2.06261)
 elif fun=='eggholder':
 fun = eggholder
 cons = nocons

 mins = np.array([-512,-512])
 maxs = np.array([512,512])
 globmin = (np.array([512,404.2319]),-959.6407)
 elif fun=='holdertable':
 fun = holdertable
 cons = nocons
 mins = np.array([-10,-10])
 maxs = np.array([10,10])
 globmin = (np.array([8.05502,9.66459]),-19.2085)
 elif fun=='mccormick':
 fun = mccormick
 cons = nocons
 mins = np.array([-1.5,-3])
 maxs = np.array([4,4])
 globmin = (np.array([-0.54719,-1.54719]),-1.9133)
 elif fun=='schaffer2':
 fun = schaffer2
 cons = nocons
 mins = np.array([-100,-100])
 maxs = np.array([100,100])
 globmin = (np.array([0,0]),0)
 elif fun=='schaffer4':
 fun = schaffer4
 cons = nocons
 mins = np.array([-100,-100])
 maxs = np.array([100,100])
 globmin = (np.array([0,1.25313]),0.292579)
 elif fun=='styblinski':
 fun = styblinski
 cons = nocons
 mins = np.array([-5,-5])
 maxs = np.array([5,5])
 globmin = (np.array([-2.903534,-2.903534]),-78.33198)
 elif fun=='simionescu':
 fun = simionescu
 cons = simioinescucons
 mins = np.array([-1.25,-1.25])
 maxs = np.array([1.25,1.25])
 globmin = (np.array([0.84852813,-0.84852813]),-0.072)
 else:
 raise ValueError('Function "'+str(fun)+'" is not a valid function')
 return (fun,cons,mins,maxs,globmin)

def ackley(genes):
 """cost function for the ackley function"""

 x1 = genes[0]
 x2 = genes[1]
 return (-20*math.exp(-0.2*pow(0.5*(x1**2+x2**2),0.5))-
 math.exp(0.5*(math.cos(2*math.pi*x1)+math.cos(2*math.pi*x2)))+
 math.e+20)

def sphere(genes):
 """cost function for the sphere function"""

 x1 = genes[0]
 x2 = genes[1]
 return x1**2+x2**2

def rosenbrock(genes):
 """cost function for the rosenbrock function"""

 x1 = genes[0]
 x2 = genes[1]
 return (100*pow(x2-x1**2,2)+pow(x1-1,2))

def beale(genes):
 """cost function for the beale function"""

 x1 = genes[0]
 x2 = genes[1]
 return (pow(1.5-x1+x1*x2,2)+
 pow(2.25-x1+x1*pow(x2,2),2)+
 pow(2.625-x1+x1*pow(x2,3),2))

def goldstein(genes):
 """cost function for the goldstein function"""

 x1 = genes[0]
 x2 = genes[1]
 return ((1+pow(x1+x2+1,2)*(19-14*x1+3*x1**2-14*x2+6*x1*x2+3*x2**2))*
 (30+pow(2*x1-3*x2,2)*(18-32*x1+12*x1**2+48*x2-36*x1*x2+27*x2**2)))

def booth(genes):
 """cost function for the booth function"""

 x1 = genes[0]
 x2 = genes[1]
 return (pow(x1+2*x2-7,2)+pow(2*x1+x2-5,2))

def bukin6(genes):
 """cost function for the bukin6 function"""

 x1 = genes[0]
 x2 = genes[1]
 return (100*pow(abs(x2-0.01*x1**2),0.5)+0.01*abs(x1+10))

def matyas(genes):
 """cost function for the matyas function"""

 x1 = genes[0]
 x2 = genes[1]
 return (0.26*(x1**2+x2**2)-0.48*x1*x2)

def levi13(genes):
 """cost function for the levi13 function"""

 x1 = genes[0]
 x2 = genes[1]
 return (math.sin(3*math.pi*x1)**2+((x1-1)**2)*
 (1+math.sin(3*math.pi*x2)**2)+((x2-1)**2)*
 (1+math.sin(2*math.pi*x2)**2))

def threehump(genes):
 """cost function for the threehump function"""

 x1 = genes[0]
 x2 = genes[1]
 return (2*x1**2-1.05*x1**4+(x1**6)/6+x1*x2+x2**2)

def easom(genes):
 """cost function for the easom function"""

 x1 = genes[0]
 x2 = genes[1]
 return (-math.cos(x1)*math.cos(x2)*
 math.exp(-((x1-math.pi)**2+(x2-math.pi)**2)))

def crosstray(genes):
 """cost function for the crosstray function"""

 x1 = genes[0]
 x2 = genes[1]
 return (-0.0001*(abs(math.sin(x1)*math.sin(x2)*
 math.exp(abs(100-math.sqrt(x1**2+x2**2)/math.pi)))+1)**0.1)

def eggholder(genes):
 """cost function for the eggholder function"""

 x1 = genes[0]
 x2 = genes[1]
 return (-(x2+47)*math.sin(math.sqrt(abs(x2+x1/2+47)))-
 x1*math.sin(math.sqrt(abs(x1-(x2+47)))))

def holdertable(genes):
 """cost function for the holdertable function"""

 x1 = genes[0]
 x2 = genes[1]
 return (-abs(math.sin(x1)*math.cos(x2)*
 math.exp(abs(1-math.sqrt(x1**2+x2**2)/math.pi))))

def mccormick(genes):
 """cost function for the mccormick function"""

 x1 = genes[0]
 x2 = genes[1]
 return (math.sin(x1+x2)+(x1-x2)**2-1.5*x1+2.5*x2+1)

def schaffer2(genes):
 """cost function for the schaffer2 function"""

 x1 = genes[0]
 x2 = genes[1]
 return (0.5+((math.sin(x1**2-x2**2)**2-0.5)/
 (1+0.001*(x1**2+x2**2))**2))

def schaffer4(genes):
 """cost function for the schaffer4 function"""

 x1 = genes[0]
 x2 = genes[1]
 return (0.5+((math.cos(math.sin(abs(x1**2-x2**2)))-0.5)/
 (1+0.001*(x1**2+x2**2))**2))

def styblinski(genes):
 """cost function for the styblinski function"""

 x1 = genes[0]
 x2 = genes[1]
 return (((x1**4-16*x1**2+5*x1)+(x2**4-16*x2**2+5*x2))/2)

def simionescu(genes):
 """cost function for the simionescu function"""

 x1 = genes[0]
 x2 = genes[1]
 return (0.1*x1*x2)

def simioinescucons(genes):
 """constraint function for the simionescu function"""

 x1 = genes[0]
 x2 = genes[1]
 return x1**2+x2**2<=(1+0.2*math.cos(2*math.atan(x1/x2)))**2

def nocons(genes):
 """constraint function for functions with only mins and maxs"""

 return True

if __name__ == '__main__':
 main()

Appendix B – Test Functions

Function Formula Minimum

Ackley

f (x , y) = −20 exp (−0.2√ 0.5(x2
+ y 2

))

−exp (0.5(cos(2 πx)+cos(2π y)))+e+20

f (0,0) = 0

−5 ≤ (x , y) ≤ 5

Sphere

f (x , y) = x2
+ y2

f (0,0) = 0

−∞ ≤ (x , y) ≤ ∞

Rosenbrock

f (x , y) = 100(y−x2
)
2
+(x−1)2

f (1,1) = 0

−∞ ≤ (x , y) ≤ ∞

Beale

f (x , y) = (1.5−x+xy)2+(2.25−x+ xy2
)
2

+(2.625−x+xy3
)
2

f (3,0.5) = 0

−4.5≤ (x , y) ≤ 4.5

Goldstein-Price

f (x , y) = (1+(x+ y+1)2(19−14 x+3 x2
−14 y+6 xy+3 y2

))

(30+(2 x−3 y)2
(18−32 x+12 x2

+48 y−36 xy+27 y2
))

f (0,−1) = 3

−2 ≤ (x , y) ≤ 2

Booth

f (x , y) = (x+2 y+7)2+(2 x+ y−5)2
f (1,3) = 0

−10 ≤ (x , y) ≤ 10

Bukin N.6

f (x , y) = 100√ | y−0.01x2|+0.01|x+10|

f (−10,1) = 0

−15 ≤ x ≤−5
−3 ≤ y ≤ 3

Matyas

f (x , y) = 0.26 (x2
+ y2

)−0.48xy
f (0,0) = 0

−10 ≤ (x , y) ≤ 10

Lévi N.13

f (x , y) = sin2
(3 πx)+(x−1)2(1+sin2

(3 π y))
+(y−1)2(1+sin2

(2π y))

f (1,1) = 0

−10 ≤ (x , y) ≤ 10

Three-hump camel

f (x , y) = 2 x2−1.05x4+
x6

6
+xy+ y2

f (0,0) = 0

−5 ≤ (x , y) ≤ 5

Easom

f (x , y) = −cos(x)cos(y)exp(−((x−π)
2
+(y−π)

2
))

f (π ,π) = −1

−100 ≤ (x , y) ≤ 100

Cross-in-tray

f (x , y) =

−0.0001(| sin (x)sin (y)exp(|100−√ x2
+ y2

π |)|+1)
0.1

f (1.349,−1.349)

f (1.349,1.349)
f (−1.349,1.349)

f (−1.349,−1.349)
= −2.06261

−10 ≤ (x , y) ≤ 10

Eggholder

f (x , y) = −(y+47)sin (√ | y+
x
2
+47 |)

−x sin (√| x−(y+47)|)

f (512,404.23)

= −959.6407

−512 ≤ (x , y) ≤ 512

Hölder table

f (x , y) = −| sin(x)cos(y)exp(|1− √x2
+ y2

π |)|

f (8.055,−9.665)

f (8.055,9 .665)
f (−8.055,9.665)

f (−8.055,−9.665)
= −19.2085

−10 ≤ (x , y) ≤ 10

McCormick

f (x , y) = sin (x+ y)+(x−y)
2
−1.5 x+2.5 y+1

f (−0.547,−1.547)

= −1.9133

−1.5 ≤ x ≤ 4
−3 ≤ y ≤ 4

Schaffer N.2

f (x , y) = 0.5+
sin2

(x2
−y2

)−0.5

(1+0.001(x2+ y2))2

f (0,0) = 0

−100 ≤ (x , y) ≤ 100

Schaffer N.4

f (x , y) = 0.5+
cos(sin (|x2

−y2|))−0.5

(1+0.001(x2+ y2))2

f (0,1.25313)

= 0.292579

−100 ≤ (x , y) ≤ 100

Styblinski-Tang

f (x , y) = 0.5((x4
−16x2

+5 x)+(y4
−16 y2

+5 y))

f (−2.904,−2.904)

= −78.33198

−5 ≤ (x , y) ≤ 5

Simionescu

f (x , y) = 0.1 xy

subject to: x2
+ y2

≤ (1+0.2cos (8arctan
x
y))

2

f (0.849,−0.849)

f (−0.849,0 .849)
= −0.072

−1.25 ≤ (x , y) ≤ 1.25

	I. Introduction
	II. Literature Review
	A. Overview of Stopping Criteria
	B. Elitist Genetic Algorithms
	C. Adaptive Crossover and Mutation Rates
	D. Differential Crossover
	E. Radioactive Zones
	F. Real-World Applications
	1) Image Processing
	2) Power Distribution
	3) Neural Network Training

	III. Methods
	IV. Results
	V. Discussion and Conclusions

