
AN-CA-001
Floating Point Multiplication on ARM

J. Haas, J. Frederickson, J. Liu, G. Umlauf
DEC 2013

Overview
This application note will analyze a floating point
multiplication operation on an ARM processor. The
assembly code generated using a C++ compiler will
be examined and explained to familiarize the reader
with ARM and floating point calculations. This
report draws heavily on the work of Anthony
Merlino, currently teaching the Introduction to
Computer Architecture laboratory section at Rowan
University.

Background
ARM is an instruction set used by billions of
electronic devices today. It is a Reduced
Instruction Set Computing (RISC) architecture
developed and maintained by ARM Holdings. The
most recent version is ARMv8-A, which can be
used for 32-bit or 64-bit applications. Among other
requirements, the specification includes 31 general
purpose registers.

The idea of floating point arithmetic was created to
address the limitations of integers in computers.
Namely, floating point numbers have a decimal
component, and can represent values many orders
of magnitude larger and smaller than can be
achieved with integers. IEEE 754, the Standard for
Floating-Point Arithmetic, defines the methodology
used by virtually every computer on the market
today to represent and manipulate floating point
numbers [1].

Representing a number using IEEE 754 breaks it
into three parts: the sign bit, the exponent, and the
significand. This paper will be discussing single
precision numbers represented using 32 bits. The
leftmost bit is the Sign Bit, where 0 indicates
positive and 1 indicates negative. The next 8 bits
make up the exponent, and the final 23 bits the
significand. The exponent is biased by 127; in
other words, when the exponent is stored it is first
added to 127. Thus, instead of values from -127 to
128, the exponent can be from 0 to 255. Finally,
there is an assumed 1 bit to the left of the
significand, resulting in 24 effective bits of storage.

Problem
How does floating point multiplication work in the
ARM instruction set?

Approach
This report used the BeagleBone Black (Figure 1)
to compile and execute code. The Black has a
1GHz AM335x ARM Cortex-A8 TI Sitara
Microprocessor. In order to view the disassembly
of a C++ program, we used Mr. Anthony Merlino's
tutorial: “Emulated Floating Point Addition on the
Beaglebone” [2]. His setup consists of TI's Code
Composer Studio and Starterware for AM335x that
uses the BlackHawk XDS100VS Emulator to
implement JTAG debugging on the BeagleBone
Black. This allowed us to directly view and step
through the assembly code for a C++ program.

Figure 1. The BeagleBone Black
development board.

Results
The C++ source file was written to multiply two
numbers, namely 1.4 and 0.042, and store the result
in a third variable. The full source code can be
found in Appendix A. Code Composer was then
used to view the disassembly presented by the
JTAG emulator. The full disassembly can be
viewed in Appendix B. The body of the report,
however, will only look at the code pertaining to
the example multiplication.

Discussion
What follows is a step-by-step analysis of the
multiplication operation. First a few lines of
assembly code are presented, then an explanation is
given following.

The main program:

LDR R12, CFL1
STR R12, [R13]

First, the values are stored in memory. CFL1 is a
substitution used by the assembler, but in essence
these two commands are storing the value 1.4 to the
location in memory pointed to by R13.

LDR R12, CFL2
STR R12, [R13, #4]

The same is done with 0.042, except it is stored 4
bytes (32 bits) after the location pointed to by R13.

LDR R0, [R13]
LDR R1, [R13, #4]
BL __aeabi_fmul

Now z = x * y; executes. Our first number is stored
in R0, and our second number is stored in R1. Next
we branch to the location in memory pointed to by
__aeabi_fmul, and store a link to the current
address in R14 so we can return later.

STR R0, [R13, #8]

The answer calculated in __aeabi_fmul (see below)
is stored in memory 8 bytes (64 bits) after our first
number.

Branch __aeabi_fmul:

STMFD R13!, {R2, R3, R4, R5, R6,
R14}

This command stores the contents of the registers
we will be modifying to memory at R13. That way
when we finish the __aeabi_fmul branch and return
to the main program, the Register File will be
virtually unchanged.

EORS R6, R0, R1

Here we are taking the exclusive or (XOR) of our
two numbers and storing the result is R6. The only
thing we actually care about is the leftmost bit,
which will be the XOR of our numbers' sign bits.
The “S” on the end of “EOR” indicates that the
Negative (N), Zero (Z), Carry (C), and Overflow
(V) flags will be set based on the result.

MOVMI R6, #-2147483648

This command only executes if the N flag is 1. The
N flag takes on the value of the leftmost bit of R6.
So if the N flag is 1, that means our numbers had
different signs. Therefore, we set the sign bit of R6
to be negative. In two's complement representation,
-2147483648 is written as the following:
10000000000000000000000000000000. This does
not execute for our example.

MOVPL R6, #0

If the N flag is 0, then our numbers had the same
sign, and the resulting sign must be positive.
Therefore, we set the sign bit of R6 to 0.

MOV R2, R0, LSL #8

This sets R2 to be the LSB of the exponent, then
the significand, then 8 zeros. One bit to the left of
the significand is necessary for a following step.

MOV R3, R0, LSL #1
MOVS R3, R3, LSR #24

Here we remove the sign bit from the first number
by shifting left once, then remove the significand
by shifting right 24 times. R3 is now the exponent
of the first number. Also, NZV are updated.

ORRNE R2, R2, #-2147483648

This adds the assumed bit back into the significand.
OR with 10000000000000000000000000000000
guarantees that the first bit will be 1, while all other
bits will remain unchanged. This command only
executes if the exponent is not 0. If the exponent or
significand are 0, we don't want to change anything
about them, so zero will be very easy to identify
down the line.

MOVEQ R0, #0
LDMEQFD R13!, {R2, R3, R4, R5, R6,
PC}

If the exponent is zero, by IEEE 754 the entire
number must be zero. Note that the actual
exponent is 0 – 127 = -127. Our answer is in R0,
and we reload the registers we saved earlier and
exit the branch back to the main program. This is
not executed for our example.

CMP R3, #255
BEQ ovfl

Here we compare R3 and 11111111 (the max
possible exponent) to check for infinity, which
IEEE 754 defines as an exponent of 255. Note that
the actual exponent is 255 – 127 = 128. If it is
infinity, we branch to ovfl. This is not executed in
our example.

MOV R4, R1, LSL #8
MOV R5, R1, LSL #1
MOVS R5, R5, LSR #24
ORRNE R4, R4, #-2147483648
MOVEQ R0, #0
LDMEQFD R13!, {R2, R3, R4, R5, R6,
PC}
CMP R5, #255
BEQ ovfl

These commands correspond exactly to the ones
executed for our first number, but this time apply to
our second number.

The state of the registers at this point is:

R0: our first number
R1: our second number
R2: first mantissa followed by zeros
R3: zeros followed by first exponent
R4: second mantissa followed by zeros
R5: zeros followed by second exponent
R6: our result's sign bit followed by zeros

ADD R3, R3, R5

Add the exponents and store the result in R3.

UMULL R5, R4, R2, R4

Multiply the mantissas and store the 32 LSB in R5,
and the 32 MSB in R4. The ones we care about are
the MSB in R4.

CMP R4, #0
MOVPL R4, R4, LSL #1
SUBPL R3, R3, #1

Compare the 32 MSB of the mantissa with 0. Note
that compare always updates NZCV. If the 32 MSB
are greater than 0, remove the assumed bit from the
mantissa and subtract 1 from the exponent.

ADDS R4, R4, #128

Add 128 = 10000000 to the significand and update
NZC. This adds one to the 7th bit, which is the first
bit after the leftmost 24 bits (i.e. the first bit our
final significand cannot hold). If it was 0, our
result is unchanged. If it was 1, the addition
effectively rounds up our answer.

ADDCS R3, R3, #1
MOVCS R4, R4, LSR #1

If a carry resulted from our rounding operation, we
have to add 1 to the exponent and shift the mantissa
to the right 1 space so as to not lost the overflow.
Note that the assumed bit was already removed
before this step, so if a carry results 10 must be to
the left of our significand. Therefore, shifting right
1 sets the MSB to 0 and we retain the assumed 1.
This is not executed in our example.

SUBS R3, R3, #126

Keep in mind that we never converted the
exponents back from excess 127. Therefore, they
are both 127 larger than they need to be. So we
subtract 126 from the exponent and update NZCV.
Combined with “SUBPL R3,R3,#1” above, this
subtracts 127 from the exponent. This will be the
final biased exponent, since it is the same as
(e1+127) + (e2+127) – 127 = (e1+e2) + 127.

MOVLE R0, #0
LDMLEFD R13!, {R2, R3, R4, R5, R6,
PC}

If the exponent was less than or equal to 126 (i.e.
R3 is now <=0 after subtracting 126), the result is 0
because an exponent of 0 or lower is equal to 0 by
IEEE 754. Then load registers and exit to main.
This is not executed in our example.

CMP R3, #255
BCS ovfl

Compare the exponent and 11111111 (max possible
exponent). If the exponent is greater than 255, it is
infinity by IEEE 754 so we branch to ovfl. This is
not executed in our example.

MOV R0, R4, LSR #8

Put the significand in R0 and make room for the
exponent by shifting right 8 spaces.

BIC R0, R0, #8388608

This is a Bit Clear operation. It performs AND on
R0 and the 1's complement of 8388608, which is
00000000011111111111111111111111. It sets all
the bits to 0 except the significand, which is
unchanged. This is done because we originally had
our first number stored in R0.

ORR R0, R0, R3, LSL #23

This places the exponent next to the significand in
R0 in the proper place.

ORR R0, R0, R6

This sets the sign bit in R0.

LDMFD R13!, {R2, R3, R4, R5, R6,
PC}

Finally we reload the registers and return to the
main program with our result in R0!

References
[1] “IEEE Standard for Floating-Point Arithmetic,"
IEEE Std 754-2008 , vol., no., pp.1,70, Aug. 29
2008. DOI: 10.1109/IEEESTD.2008.4610935

[2] ARM Architecture Reference Manual, I ed.,
ARM Limited, Cambridge, England, 2005.

[3] A. Merlino. (2013). Emulated Floating Point
Addition on the Beaglebone [Online]. Available:
http://anthonymerlino.us/uncategorized/emulated-fl
oating-point-addition-on-the-beaglebone

Appendix A – Source Code
int main(void) {
float x = 1.4;
float y = .042;
float z;

z = x * y;

return 0;
}

Appendix B – Disassembly

 __aeabi_fmul:
800008bc: E92D407C STMFD R13!, {R2, R3, R4, R5, R6, R14}
800008c0: E0306001 EORS R6, R0, R1
800008c4: 43A06102 MOVMI R6, #-2147483648
800008c8: 53A06000 MOVPL R6, #0
800008cc: E1A02400 MOV R2, R0, LSL #8
800008d0: E1A03080 MOV R3, R0, LSL #1
800008d4: E1B03C23 MOVS R3, R3, LSR #24
800008d8: 13822102 ORRNE R2, R2, #-2147483648
800008dc: 03A00000 MOVEQ R0, #0
800008e0: 08BD807C LDMEQFD R13!, {R2, R3, R4, R5, R6, PC}
800008e4: E35300FF CMP R3, #255
800008e8: 0A000019 BEQ ovfl
800008ec: E1A04401 MOV R4, R1, LSL #8
800008f0: E1A05081 MOV R5, R1, LSL #1
800008f4: E1B05C25 MOVS R5, R5, LSR #24
800008f8: 13844102 ORRNE R4, R4, #-2147483648
800008fc: 03A00000 MOVEQ R0, #0
80000900: 08BD807C LDMEQFD R13!, {R2, R3, R4, R5, R6, PC}
80000904: E35500FF CMP R5, #255
80000908: 0A000011 BEQ ovfl
8000090c: E0833005 ADD R3, R3, R5
80000910: E0845492 UMULL R5, R4, R2, R4
80000914: E3540000 CMP R4, #0
80000918: 51A04084 MOVPL R4, R4, LSL #1
8000091c: 52433001 SUBPL R3, R3, #1
80000920: E2944080 ADDS R4, R4, #128
80000924: 22833001 ADDCS R3, R3, #1
80000928: 21A040A4 MOVCS R4, R4, LSR #1
8000092c: E253307E SUBS R3, R3, #126
80000930: D3A00000 MOVLE R0, #0
80000934: D8BD807C LDMLEFD R13!, {R2, R3, R4, R5, R6, PC}
80000938: E35300FF CMP R3, #255
8000093c: 2A000004 BCS ovfl
80000940: E1A00424 MOV R0, R4, LSR #8
80000944: E3C00502 BIC R0, R0, #8388608
80000948: E1800B83 ORR R0, R0, R3, LSL #23
8000094c: E1800006 ORR R0, R0, R6
80000950: E8BD807C LDMFD R13!, {R2, R3, R4, R5, R6, PC}

 ovfl:
80000954: E3A0E0FF MOV R14, #255
80000958: E1A0EB8E MOV R14, R14, LSL #23
8000095c: E186000E ORR R0, R6, R14
80000960: E8BD807C LDMFD R13!, {R2, R3, R4, R5, R6, PC}

 4 int main(void) {
 main:
80000a88: E92D400E STMFD R13!, {R1, R2, R3, R14}
 6 float x = 1.4;
80000a8c: E59FC020 LDR R12, CFL1
80000a90: E58DC000 STR R12, [R13]
 7 float y = .042;
80000a94: E59FC01C LDR R12, CFL2
80000a98: E58DC004 STR R12, [R13, #4]
10 z = x * y;
80000a9c: E59D0000 LDR R0, [R13]
80000aa0: E59D1004 LDR R1, [R13, #4]
80000aa4: EBFFFF84 BL __aeabi_fmul
80000aa8: E58D0008 STR R0, [R13, #8]
12 return 0;
80000aac: E3A00000 MOV R0, #0
13 }
80000ab0: E8BD800E LDMFD R13!, {R1, R2, R3, PC}

