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Overview
This application note will analyze a floating point 
multiplication operation on an ARM processor.  The
assembly code generated using a C++ compiler will
be examined and explained to familiarize the reader
with ARM and floating point calculations.  This 
report draws heavily on the work of Anthony 
Merlino, currently teaching the Introduction to 
Computer Architecture laboratory section at Rowan
University.

Background
ARM is an instruction set used by billions of 
electronic devices today.  It is a Reduced 
Instruction Set Computing (RISC) architecture 
developed and maintained by ARM Holdings.  The 
most recent version is ARMv8-A, which can be 
used for 32-bit or 64-bit applications.  Among other
requirements, the specification includes 31 general 
purpose registers.

The idea of floating point arithmetic was created to 
address the limitations of integers in computers.  
Namely, floating point numbers have a decimal 
component, and can represent values many orders 
of magnitude larger and smaller than can be 
achieved with integers.  IEEE 754, the Standard for 
Floating-Point Arithmetic, defines the methodology
used by virtually every computer on the market 
today to represent and manipulate floating point 
numbers [1].

Representing a number using IEEE 754 breaks it 
into three parts: the sign bit, the exponent, and the 
significand.  This paper will be discussing single 
precision numbers represented using 32 bits.  The 
leftmost bit is the Sign Bit, where 0 indicates 
positive and 1 indicates negative.  The next 8 bits 
make up the exponent, and the final 23 bits the 
significand.  The exponent is biased by 127; in 
other words, when the exponent is stored it is first 
added to 127.  Thus, instead of values from -127 to 
128, the exponent can be from 0 to 255.  Finally, 
there is an assumed 1 bit to the left of the 
significand, resulting in 24 effective bits of storage.

Problem
How does floating point multiplication work in the 
ARM instruction set?

Approach
This report used the BeagleBone Black (Figure 1) 
to compile and execute code.  The Black has a 
1GHz AM335x ARM Cortex-A8 TI Sitara 
Microprocessor.  In order to view the disassembly 
of a C++ program, we used Mr. Anthony Merlino's 
tutorial: “Emulated Floating Point Addition on the 
Beaglebone” [2].  His setup consists of TI's Code 
Composer Studio and Starterware for AM335x that 
uses the BlackHawk XDS100VS Emulator to 
implement JTAG debugging on the BeagleBone 
Black.  This allowed us to directly view and step 
through the assembly code for a C++ program.

Figure 1. The BeagleBone Black
development board.

Results
The C++ source file was written to multiply two 
numbers, namely 1.4 and 0.042, and store the result
in a third variable.  The full source code can be 
found in Appendix A.  Code Composer was then 
used to view the disassembly presented by the 
JTAG emulator.  The full disassembly can be 
viewed in Appendix B.  The body of the report, 
however, will only look at the code pertaining to 
the example multiplication.



Discussion
What follows is a step-by-step analysis of the 
multiplication operation.  First a few lines of 
assembly code are presented, then an explanation is
given following.

The main program:

LDR R12, $C$FL1
STR R12, [R13]

First, the values are stored in memory.  $C$FL1 is a
substitution used by the assembler, but in essence 
these two commands are storing the value 1.4 to the
location in memory pointed to by R13.

LDR R12, $C$FL2
STR R12, [R13, #4]

The same is done with 0.042, except it is stored 4 
bytes (32 bits) after the location pointed to by R13.

LDR R0, [R13]
LDR R1, [R13, #4]
BL __aeabi_fmul

Now z = x * y; executes.  Our first number is stored
in R0, and our second number is stored in R1.  Next
we branch to the location in memory pointed to by 
__aeabi_fmul, and store a link to the current 
address in R14 so we can return later.

STR R0, [R13, #8]

The answer calculated in __aeabi_fmul (see below) 
is stored in memory 8 bytes (64 bits) after our first 
number.

Branch __aeabi_fmul:

STMFD R13!, {R2, R3, R4, R5, R6, 
R14}

This command stores the contents of the registers 
we will be modifying to memory at R13.  That way 
when we finish the __aeabi_fmul branch and return
to the main program, the Register File will be 
virtually unchanged.

EORS R6, R0, R1

Here we are taking the exclusive or (XOR) of our 
two numbers and storing the result is R6.  The only 
thing we actually care about is the leftmost bit, 
which will be the XOR of our numbers' sign bits.  
The “S” on the end of “EOR” indicates that the 
Negative (N), Zero (Z), Carry (C), and Overflow 
(V) flags will be set based on the result.

MOVMI R6, #-2147483648

This command only executes if the N flag is 1.  The
N flag takes on the value of the leftmost bit of R6.  
So if the N flag is 1, that means our numbers had 
different signs.  Therefore, we set the sign bit of R6 
to be negative.  In two's complement representation,
-2147483648 is written as the following: 
10000000000000000000000000000000.  This does 
not execute for our example.

MOVPL R6, #0

If the N flag is 0, then our numbers had the same 
sign, and the resulting sign must be positive.  
Therefore, we set the sign bit of R6 to 0.

MOV R2, R0, LSL #8

This sets R2 to be the LSB of the exponent, then 
the significand, then 8 zeros.  One bit to the left of 
the significand is necessary for a following step.

MOV R3, R0, LSL #1
MOVS R3, R3, LSR #24

Here we remove the sign bit from the first number 
by shifting left once, then remove the significand 
by shifting right 24 times.  R3 is now the exponent 
of the first number.  Also, NZV are updated.

ORRNE R2, R2, #-2147483648

This adds the assumed bit back into the significand.
OR with 10000000000000000000000000000000 
guarantees that the first bit will be 1, while all other
bits will remain unchanged.  This command only 
executes if the exponent is not 0.  If the exponent or
significand are 0, we don't want to change anything 
about them, so zero will be very easy to identify 
down the line.



MOVEQ R0, #0
LDMEQFD R13!, {R2, R3, R4, R5, R6,
PC}

If the exponent is zero, by IEEE 754 the entire 
number must be zero.  Note that the actual 
exponent is 0 – 127 = -127.  Our answer is in R0, 
and we reload the registers we saved earlier and 
exit the branch back to the main program.  This is 
not executed for our example.

CMP R3, #255
BEQ ovfl

Here we compare R3 and 11111111 (the max 
possible exponent) to check for infinity, which 
IEEE 754 defines as an exponent of 255.  Note that 
the actual exponent is 255 – 127 = 128.  If it is 
infinity, we branch to ovfl.  This is not executed in 
our example.

MOV R4, R1, LSL #8
MOV R5, R1, LSL #1
MOVS R5, R5, LSR #24
ORRNE R4, R4, #-2147483648
MOVEQ R0, #0
LDMEQFD R13!, {R2, R3, R4, R5, R6,
PC}
CMP R5, #255
BEQ ovfl

These commands correspond exactly to the ones 
executed for our first number, but this time apply to
our second number.

The state of the registers at this point is:

R0: our first number
R1: our second number
R2: first mantissa followed by zeros
R3: zeros followed by first exponent
R4: second mantissa followed by zeros
R5: zeros followed by second exponent
R6: our result's sign bit followed by zeros

ADD R3, R3, R5

Add the exponents and store the result in R3.

UMULL R5, R4, R2, R4

Multiply the mantissas and store the 32 LSB in R5, 
and the 32 MSB in R4.  The ones we care about are 
the MSB in R4.

CMP R4, #0
MOVPL R4, R4, LSL #1
SUBPL R3, R3, #1

Compare the 32 MSB of the mantissa with 0.  Note 
that compare always updates NZCV.  If the 32 MSB
are greater than 0, remove the assumed bit from the 
mantissa and subtract 1 from the exponent.

ADDS R4, R4, #128

Add 128 = 10000000 to the significand and update 
NZC.  This adds one to the 7th bit, which is the first
bit after the leftmost 24 bits (i.e. the first bit our 
final significand cannot hold).  If it was 0, our 
result is unchanged.  If it was 1, the addition 
effectively rounds up our answer.

ADDCS R3, R3, #1
MOVCS R4, R4, LSR #1

If a carry resulted from our rounding operation, we 
have to add 1 to the exponent and shift the mantissa
to the right 1 space so as to not lost the overflow.  
Note that the assumed bit was already removed 
before this step, so if a carry results 10 must be to 
the left of our significand.  Therefore, shifting right 
1 sets the MSB to 0 and we retain the assumed 1.  
This is not executed in our example.

SUBS R3, R3, #126

Keep in mind that we never converted the 
exponents back from excess 127.  Therefore, they 
are both 127 larger than they need to be.  So we 
subtract 126 from the exponent and update NZCV.
Combined with “SUBPL R3,R3,#1” above, this 
subtracts 127 from the exponent.  This will be the 
final biased exponent, since it is the same as
(e1+127) + (e2+127) – 127 = (e1+e2) + 127.



MOVLE R0, #0
LDMLEFD R13!, {R2, R3, R4, R5, R6,
PC}

If the exponent was less than or equal to 126 (i.e. 
R3 is now <=0 after subtracting 126), the result is 0
because an exponent of 0 or lower is equal to 0 by 
IEEE 754.  Then load registers and exit to main.  
This is not executed in our example.

CMP R3, #255
BCS ovfl

Compare the exponent and 11111111 (max possible 
exponent).  If the exponent is greater than 255, it is 
infinity by IEEE 754 so we branch to ovfl.  This is 
not executed in our example.

MOV R0, R4, LSR #8

Put the significand in R0 and make room for the 
exponent by shifting right 8 spaces.

BIC R0, R0, #8388608

This is a Bit Clear operation.  It performs AND on 
R0 and the 1's complement of 8388608, which is 
00000000011111111111111111111111.  It sets all 
the bits to 0 except the significand, which is 
unchanged.  This is done because we originally had 
our first number stored in R0.

ORR R0, R0, R3, LSL #23

This places the exponent next to the significand in 
R0 in the proper place.

ORR R0, R0, R6

This sets the sign bit in R0.

LDMFD R13!, {R2, R3, R4, R5, R6, 
PC}

Finally we reload the registers and return to the 
main program with our result in R0!
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Appendix A – Source Code
int main(void) {
float x = 1.4;
float y = .042;
float z;

z = x * y;

return 0;
}



Appendix B – Disassembly

          __aeabi_fmul:
800008bc:   E92D407C STMFD           R13!, {R2, R3, R4, R5, R6, R14}
800008c0:   E0306001 EORS            R6, R0, R1
800008c4:   43A06102 MOVMI           R6, #-2147483648
800008c8:   53A06000 MOVPL           R6, #0
800008cc:   E1A02400 MOV             R2, R0, LSL #8
800008d0:   E1A03080 MOV             R3, R0, LSL #1
800008d4:   E1B03C23 MOVS            R3, R3, LSR #24
800008d8:   13822102 ORRNE           R2, R2, #-2147483648
800008dc:   03A00000 MOVEQ           R0, #0
800008e0:   08BD807C LDMEQFD         R13!, {R2, R3, R4, R5, R6, PC}
800008e4:   E35300FF CMP             R3, #255
800008e8:   0A000019 BEQ             ovfl
800008ec:   E1A04401 MOV             R4, R1, LSL #8
800008f0:   E1A05081 MOV             R5, R1, LSL #1
800008f4:   E1B05C25 MOVS            R5, R5, LSR #24
800008f8:   13844102 ORRNE           R4, R4, #-2147483648
800008fc:   03A00000 MOVEQ           R0, #0
80000900:   08BD807C LDMEQFD         R13!, {R2, R3, R4, R5, R6, PC}
80000904:   E35500FF CMP             R5, #255
80000908:   0A000011 BEQ             ovfl
8000090c:   E0833005 ADD             R3, R3, R5
80000910:   E0845492 UMULL           R5, R4, R2, R4
80000914:   E3540000 CMP             R4, #0
80000918:   51A04084 MOVPL           R4, R4, LSL #1
8000091c:   52433001 SUBPL           R3, R3, #1
80000920:   E2944080 ADDS            R4, R4, #128
80000924:   22833001 ADDCS           R3, R3, #1
80000928:   21A040A4 MOVCS           R4, R4, LSR #1
8000092c:   E253307E SUBS            R3, R3, #126
80000930:   D3A00000 MOVLE           R0, #0
80000934:   D8BD807C LDMLEFD         R13!, {R2, R3, R4, R5, R6, PC}
80000938:   E35300FF CMP             R3, #255
8000093c:   2A000004 BCS             ovfl
80000940:   E1A00424 MOV             R0, R4, LSR #8
80000944:   E3C00502 BIC             R0, R0, #8388608
80000948:   E1800B83 ORR             R0, R0, R3, LSL #23
8000094c:   E1800006 ORR             R0, R0, R6
80000950:   E8BD807C LDMFD           R13!, {R2, R3, R4, R5, R6, PC}



          ovfl:
80000954:   E3A0E0FF MOV             R14, #255
80000958:   E1A0EB8E MOV             R14, R14, LSL #23
8000095c:   E186000E ORR             R0, R6, R14
80000960:   E8BD807C LDMFD           R13!, {R2, R3, R4, R5, R6, PC}

 4        int main(void) {
          main:
80000a88:   E92D400E STMFD           R13!, {R1, R2, R3, R14}
 6        float x = 1.4;
80000a8c:   E59FC020 LDR             R12, $C$FL1
80000a90:   E58DC000 STR             R12, [R13]
 7        float y = .042;
80000a94:   E59FC01C LDR             R12, $C$FL2
80000a98:   E58DC004 STR             R12, [R13, #4]
10        z = x * y;
80000a9c:   E59D0000 LDR             R0, [R13]
80000aa0:   E59D1004 LDR             R1, [R13, #4]
80000aa4:   EBFFFF84 BL              __aeabi_fmul
80000aa8:   E58D0008 STR             R0, [R13, #8]
12        return 0;
80000aac:   E3A00000 MOV             R0, #0
13        }
80000ab0:   E8BD800E LDMFD           R13!, {R1, R2, R3, PC}


