
AN-CA-002
BeagleBell A5C

J. Haas, J. Frederickson, J. Liu, G. Umlauf
DEC 2013

Overview
This application note will outline the functionality
of the BeagleBell A5C, an Internet-enabled smart
doorbell. The BeagleBell was developed using
Python on the BeagleBone Black as a final project
for Rowan University’s Computer Architecture
class. The goal was to create a doorbell that would
send a picture of the visitor to the homeowner’s
smartphone.

Background
The BeagleBone Black is relatively inexpensive
and powerful development platform. It is based on
the ARM architecture, which is an instruction set
used by billions of electronic devices today. It is a
Reduced Instruction Set Computing (RISC)
architecture developed and maintained by ARM
Holdings. The most recent version is ARMv8-A,
which can be used for 32-bit or 64-bit applications.
Among other requirements, the specification
includes 31 general purpose registers. The
BeagleBone Black features a 1GHz AM335x ARM
Cortex-A8 TI Sitara Microprocessor, as well as a
floating point unit.

The BeagleBone Black also features numerous I/O
ports, including micro USB, USB, micro HDMI,
micro SD, ethernet, GPIO pins, and analog pins.
We used the default Ångström Linux distribution as
the operating system for the BeagleBone Black. In
addition, the team used Bit Bucket for version
tracking and programming collaboration. The
BeagleBone Black is shown below in Figure 1.

Figure 1. The BeagleBone Black.

Problem

To create a better doorbell using the BeagleBone
Black. Pushing the button will send a picture of the
visitor to the homeowner via text message or
e-mail.

Inputs:
• Push button via GPIO
• Webcam via USB
• Config file

Outputs:
• Status via terminal
• Email via ethernet

Approach
This project used the BeagleBone Black to do all of
the processing. The code was written in Python,
using external libraries to easily implement input
and output without worrying about low level
interfacing. We used OpenCL for image capture
from the webcam, Python’s built-in email library
for email/SMS, and Adafruit’s BeagleBone I/O
library for interfacing with hardware peripherals.

Our main module beaglebell.py can be found in
Appendix A. It contains an infinite while loop (the
program can be exited via Ctrl+C at the terminal).

Inside the loop, it stores the last state of the button,
then checks the new state of the button. If the
button changed from 0 (not pressed) to 1 (pressed),
then we take a picture and send an e-mail. The
main module also reads user configurable settings
from the text file beaglebell.conf.

First, the button was attached to the GPIO headers
on the BeagleBone Black using a breadboard,
following a guide on Adafruit [1]. The headers are
shown below in Figure 2.

Figure 2. BeagleBone Black I/O headers.

The input pin, P8.12 “GPIO1_12”, was connected
across a 1k resistor to P8.2 “GND”. The button
was placed between the input pin and P9.3 “3.3V”.
When button is open, the input sees 0V because it is
connected to ground, producing a logic 0 in Python.
When the button is pressed, the input sees 3.3V,
producing a logic 1 in Python. The 1k resistor
dissipates power to prevent a short circuit between
the 0V and 3.3V pins. The schematic is shown
below in Figure 3.

Figure 3. Schematic showing button connections.

We also made a testing module, led-button.py, that
ties the state of the USR0 LED on the BeagleBone
Black to the state of the button. This makes it easy
to check if the button is connected correctly, and
can be found in Appendix B.

Once a button press is detected, the take_picture()
method in webcam.py is called, passing the path of
the file to be created as a parameter.

In the webcam class (Appendix C), a new video
capture object (cv2) is created. This functions as
an interface to the camera using OpenCV. The
height and width parameters are set to 320x240,
and a single frame is saved to a local file.

If the image file was created successfully, the driver
then passes the file path to the emailer class. Two
objects are created: a MIMEMultipart object
representing the email to be sent, and a
MIMEImage object containing the attached image.
The addresses in the “to” field are loaded from the
beaglebell.conf configuration file. A connection to
the chosen SMTP server is then established, and the
message is sent. In the case of text message, an
SMS gateway is used, which is supplied by many
cell phone carriers. Basically, sending an e-mail to
the SMS gateway results in a text message on the
target phone.

Responsibilities

Joshua Haas
• Main driver: beaglebell.py
• Configuration: beaglebell.conf

Jonathan Frederickson
• Taking pictures: webcam.py

Graham Umlauf
• Sending mail: emailer.py

Justin Liu
• Connecting the button
• Testing the button: led-button.py

Results
The BeagleBell worked as intended, sending a
picture to the addresses listed in the configuration
file when the button is pressed. This was always
successful when using email addresses. When

using SMS gateways, however, only Verizon and
AT&T consistently worked. Sprint stripped the
picture from the message and only sent the text and
T-Mobile did not work at all. Other carriers were
not tested.

Discussion
The email and button handling code worked as
expected. However, when we attempted to take a
picture with a resolution of 640x480, the image was
not fully formed. After some research, we realized
that the issue was in the Video4Linux utility that we
were using to interface with the camera. It turns
out that the decoder Video4Linux was using to
decompress the JPEG-encoded images from the
camera uses a lot of floating point, and the
BeagleBone’s FPU just isn’t fast enough. Another
BeagleBone user had written code to capture
uncompressed images instead, but doing so is very
webcam specific [2]. Due to time constraints, we
did not attempt to do this.

Future Work
All of the following were not implemented due to
time constraints, but could significantly improve
the functionality of the device.

The group originally intended to allow the visitor to
send a text message along with the picture via
Morse Code. However, this is generally impractical
and would have been more a programming exercise
than an added feature.

Implementing a custom interface with the webcam
would enable it to take larger pictures and thus give
a clearer image of the person ringing the
BeagleBell. However, this was beyond the scope of
this course and was purposefully avoided as an I/O
component.

Although a vague API of sorts is available online
for the SMS gateways of many cell carriers, some
of them do not work as advertised. In order to
resolve this issue we would likely need to contact
the carriers’ customer support. On further thought,
the group decided that the vast majority of
homeowners now own smartphones which can
easily retrieve e-mails, making this feature
somewhat less important.

References
[1] S. Monk. (2013, Jul. 30). Connecting a Push
Button to BeagleBone Black [Online]. Available:
http://learn.adafruit.com/connecting-a-push-button-
to-beaglebone-black/overview

[2] M. Darling. (2013, Sep. 24). How to Achieve 30
fps with BeagleBone Black, OpenCV, and Logitech
C920 Webcam [Online]. Available:
http://blog.lemoneerlabs.com/3rdParty/Darling_BB
B_30fps_DRAFT.html

Appendix A: Driver Class

#!/usr/bin/env python

import time, sys, ConfigParser
import Adafruit_BBIO.GPIO as GPIO
from emailer import Mailer
import webcam as cam

RETRY = 5; WAIT = 30

def main():

#Import the config file
config = ConfigParser.RawConfigParser()
config.read("beaglebell.conf")

#Get a list of all the addresses in the config file
sections = config.sections()
sections.remove("Sender")
addresses = [config.get(s,"address") for s in sections]

#Get the Sender info
server = config.get("Sender","server")
username = config.get("Sender","username")
password = config.get("Sender","password")

#Create a new Mailer
mailer = Mailer(username,password,addresses,server)

#Setup the input pin
GPIO.setup("P8_12", GPIO.IN)

#Keep track of the last state of the button
old = 0;

#Clear Screen
for i in range(0,20):

 print ""

while True:

 #Get the new state of the button
 new = GPIO.input("P8_12")

 #If the button was just pressed down
 #take a picture and send an e-mail
 if old==0 and new==1:

 #Take picture
 fname = time.strftime("%c").replace(" ","_").replace(":","-")+".png"
 cam.take_picture(fname)

 #Print lines to hide weird opencv output
 for i in range(0,20):
 print ""

 #E-mail it
 sent = False
 count = 0
 while(sent == False and count < RETRY):
 try:
 mailer.mail(fname)
 sent = True
 print('Ding dong! Message sent!')
 except Exception: #TODO: Be more specific with the exception to catch here...
 sys.stderr.write('Unable to send message. Waiting to retry.\n')
 time.sleep(WAIT)
 count = count + 1
 if count == 5:
 print "Failed to send message. Check your connection."

if __name__ == "__main__":
main()

Appendix B: Button Testing Class

#!/usr/bin/env python

Following this guide on Adafruit:
http://learn.adafruit.com/connecting-a-push-button-to-beaglebone-black/overview

import Adafruit_BBIO.GPIO as GPIO

def main():

GPIO.setup("P8_12", GPIO.IN)

old = 0

while True:

 new = GPIO.input("P8_12")
 if old==0 and new==1:
 with open("/sys/class/leds/beaglebone:green:usr0/brightness","w") as led0:
 led0.write("1")
 elif old==1 and new==0:
 with open("/sys/class/leds/beaglebone:green:usr0/brightness","w") as led0:
 led0.write("0")

 old = new

if __name__ == "__main__":
main()

Appendix C: Webcam Capture Class

#!/usr/bin/env python

import cv2

def take_picture(path):

cap = cv2.VideoCapture(0) # 0 is device id - first camera on system

cap.set(3, 320)
cap.set(4, 240)

retval, image = cap.read() # Take a picture!
result = cv2.imwrite(path, image) # Write image to a file

del(cap) # Close camera

Appendix D: Emailer Class

#!/usr/bin/env python

Import smtplib for the actual sending function
import smtplib

Here are the email package modules we'll need
from email.mime.image import MIMEImage
from email.mime.multipart import MIMEMultipart

', '
class Mailer:

def __init__(self, username, password, address, host, port = 465):
 self.usr = username #The doorbell owner's username
 self.to = address #The destination of the emails.
 self.pas = password #The password of the doorbell owner.
 self.h = host #The host and port to use to send the email.
 self.p = port

def mail(self, file):
#Sends an email message with a picture attachment in PNG format to the provided address.

 #Creating the email:
 msg = MIMEMultipart() # Create the container (outer) email message.
 msg['Subject'] = 'Someone rang your doorbell!'
 msg['From'] = self.usr
 msg['To'] = ",".join(self.to)
 msg.preamble = ''

 #Attachting the picture to the email:
 # Assume the provided file is in proper PNG format:
 fp = open(file, 'rb')
 img = MIMEImage(fp.read()) # Open the files using extension to determine type
 fp.close()
 msg.attach(img) #Attach the image to the email.

 # Connect to the SMTP server, login, and send the email.
 server = smtplib.SMTP_SSL(self.h, self.p)
 server.login(self.usr, self.pas)
 server.sendmail(self.usr, self.to, msg.as_string())
 server.quit

Appendix E: Sample Config File

 [Sender]
 server=smtp.gmail.com
 username=username@gmail.com
 password=password

 [My Cell]
 address=1002003000@vtext.com

 [My e-mail]
 address=zzz@zzz.com

